scholarly journals Correlation analysis and fuel moisture estimation based on FMA and FMA+fire danger indices in aPinus elliottiiplantation in southern Brazil

Author(s):  
J. F. Pereira ◽  
A. C. Batista ◽  
R. V. Soares
2013 ◽  
Vol 13 (9) ◽  
pp. 2157-2167 ◽  
Author(s):  
C. Schunk ◽  
C. Wastl ◽  
M. Leuchner ◽  
C. Schuster ◽  
A. Menzel

Abstract. Forest fire danger rating based on sparse meteorological stations is known to be potentially misleading when assigned to larger areas of complex topography. This case study examines several fire danger indices based on data from two meteorological stations at different elevations during a major drought period. This drought was caused by a persistent high pressure system, inducing a pronounced temperature inversion and its associated thermal belt with much warmer, dryer conditions in intermediate elevations. Thus, a massive drying of fuels, leading to higher fire danger levels, and multiple fire occurrences at mid-slope positions were contrasted by moderate fire danger especially in the valleys. The ability of fire danger indices to resolve this situation was studied based on a comparison with the actual fire danger as determined from expert observations, fire occurrences and fuel moisture measurements. The results revealed that, during temperature inversion, differences in daily cycles of meteorological parameters influence fire danger and that these are not resolved by standard meteorological stations and fire danger indices (calculated on a once-a-day basis). Additional stations in higher locations or high-resolution meteorological models combined with fire danger indices accepting at least hourly input data may allow reasonable fire danger calculations under these circumstances.


2012 ◽  
Vol 5 (1) ◽  
pp. 197-203 ◽  
Author(s):  
C Giannakopoulos ◽  
P LeSager ◽  
M Moriondo ◽  
M Bindi ◽  
A Karali ◽  
...  

Author(s):  
František Jurečka ◽  
Martin Možný ◽  
Jan Balek ◽  
Zdeněk Žalud ◽  
Miroslav Trnka

The performance of fire indices based on weather variables was analyzed with a special focus on the Czech Republic. Three fire weather danger indices that are the basis of fire danger rating systems used in different parts of the world were assessed: the Canadian Fire Weather Index (FWI), Australian Forest Fire Danger Index (FFDI) and Finnish Forest Fire Index (FFI). The performance of the three fire danger indices was investigated at different scales and compared with actual fire events. First, the fire danger indices were analyzed for different land use types during the period 1956–2015. In addition, in the analysis, the three fire danger indices were compared with wildfire events during the period 2001–2015. The fire danger indices were also analyzed for the specific locality of the Bzenec area where a large forest fire event occurred in May 2012. The study also focused on the relationship between fire danger indices and forest fires during 2018 across the area of the Jihomoravský region. Comparison of the index values with real fires showed that the index values corresponded well with the occurrence of forest fires. The analysis of the year 2018 showed that the highest index values were reached on days with the greater fire occurrence. On days with 5 or 7 reported fires per day, the fire danger indices reached values between 3 and 4.


Author(s):  
Andrea Camia ◽  
Giovanni Bovio ◽  
Inmaculada Aguado ◽  
Nicolas Stach

2013 ◽  
Vol 136 ◽  
pp. 455-468 ◽  
Author(s):  
Marta Yebra ◽  
Philip E. Dennison ◽  
Emilio Chuvieco ◽  
David Riaño ◽  
Philip Zylstra ◽  
...  

2004 ◽  
Vol 34 (11) ◽  
pp. 2284-2293 ◽  
Author(s):  
Emilio Chuvieco ◽  
Inmaculada Aguado ◽  
Alexandros P Dimitrakopoulos

Fuel moisture content (FMC) estimation is a critical part of any fire danger rating system, since fuel water status is determinant in fire ignition and fire propagation. However, FMC alone does not provide a comprehensive assessment of fire danger, since other factors related to fire ignition (lightning, human factors) or propagation (wind, slope) also need to be taken into account. The problem in integrating all these factors is finding a common scale of danger rating that will make it possible to derive synthetic indices. This paper reviews the importance of FMC in fire ignition and fire propagation, as well as the most common methods of estimating FMC values. A simple method to convert FMC values to danger ratings is proposed, based on computing ignition potential from thresholds of moisture of extinction adapted to each fuel. The method has been tested for the Madrid region (central Spain), where a fire danger assessment system has been built. All the variables related to fire danger were integrated into a dedicated geographic information system and information provided to fire managers through a web mapping server.


Author(s):  
Daniel J. McEvoy ◽  
Mike T. Hobbins ◽  
Tim J. Brown ◽  
Kristin VanderMolen ◽  
Tamara Wall ◽  
...  

Relationships between drought and fire danger indices are examined to 1) incorporate fire risk information into the National Integrated Drought Information System California-Nevada Drought Early Warning System and 2) provide a baseline analysis for application of drought indices into a fire risk management framework. We analyzed four drought indices that incorporate precipitation and evaporative demand (E0) and three fire indices that reflect fuel moisture and potential fire intensity. Seasonally averaged fire danger indices were most strongly correlated to multi-scalar drought indices that use E0 (the Evaporative Demand Drought Index [EDDI] and Standardized Precipitation Evapotranspiration Index [SPEI]) at approximately annual time scales that reflect buildup of antecedent drought conditions. Results indicate that EDDI and SPEI can inform seasonal fire potential outlooks at the beginning of summer. An E0 decomposition case study of conditions prior to the Tubbs Fire in Northern California indicate high E0 (97th percentile) driven predominantly by low humidity signaled increased fire potential several days before the start of the fire. Initial use of EDDI by fire management groups during summer and fall 2018 highlights several value-added applications, including seasonal fire potential outlooks, funding fire severity level requests, and assessing set-up conditions prior to large, explosive fire cases.


2019 ◽  
Vol 28 (3) ◽  
pp. 254 ◽  
Author(s):  
F. Pimont ◽  
J. Ruffault ◽  
N.K. Martin-StPaul ◽  
J.-L. Dupuy

Identifying the links between fire danger metrics and fire activity is critical in various operational and research fields. A common methodology consists in analysing the relationship between cumulative burnt areas and fire danger metrics. Building on this approach, it has been proposed that fuel moisture content (FMC) drives fire activity in some ecosystems through between one and three breakpoints corresponding to the onset or saturation of fire activity. We demonstrate, through two different approaches, that this methodology is incorrect, because it is biased by the frequency distribution of FMC values. From comparison with a neutral fire distribution and correction for the frequency bias, we show that cumulative burnt area breakpoints are spurious: an upper breakpoint might exist (but would be higher than expected), while no evidence of reduced fire danger was detected for the lowest values of FMC (on the contrary, a secondary increase was detected). Our findings clearly suggest that previous breakpoints resulting from this methodology should be considered with caution, as erroneous conclusions regarding fire danger breakpoints could have major consequences for both fire safety and science outcomes. Finally, we discuss widespread confusion between fire danger breakpoints and fire danger levels, which explains most previous erroneous conclusions.


Sign in / Sign up

Export Citation Format

Share Document