scholarly journals Predicting Land use and land cover spatiotemporal changes utilizing CA-Markov model in Duhok district between 1999 and 2033

2020 ◽  
Vol 9 (4) ◽  
pp. 71
Author(s):  
Ashti I. Abdulrahman ◽  
Shamal A. Ameen

The process of spatiotemporal changes in land use land cover (LULC) and predicting their future changes are highly important for LULC managers. one of the most important challenges in LULC studies is considered to be the creation of simulation of future change in LULC that involve spatial modeling. the purpose of this study is to use GIS and remote sensing to classify LULC classes in Duhok district between 1999 and 2018, and their results calculated using an integrated cellular automaton and ca-markov chain model to simulate LULC changes in 2033. in this study, satellite images from landsat7 ETM and landsat8 oli used for Duhok district which is located in the northern part of Iraq obtained from united states geological survey (USGS) for the periods (1999 and 2018) analyzed using remote sensing and GIS techniques in addition to the ground control points, for each class 60 ground points have taken. to simulate future LULC changes for 2033, integrated approaches of cellular automata and ca-markov models utilized in Idrisi selva software. the outcomes demonstrate that Duhok district has experienced a total of 184.91km changes during the period (table 4). the prediction also indicates that the changes will equal to 235.4 km by 2033 (table 8). soil and grass constitute the majority of changes among LULC classes and are increasing continuously. the achieved kappa values for the model accuracy assessment higher than 0.93 and 0.85 for 1999 and 2018 respectively showed the model’s capability to forecast future LULC changes in Duhok district. thus, analyzing trends of LULC changes from past to now and predict future applying ca-markov model can play an important role in land use planning, policy making, and managing randomly utilized LULC classes in the proposed study area.

2020 ◽  
Author(s):  
shamal

AbstractTHE PROCESS OF SPATIOTEMPORAL CHANGES IN LAND USE LAND COVER (LULC) AND PREDICTING THEIR FUTURE CHANGES ARE HIGHLY IMPORTANT FOR LULC MANAGERS. ONE OF THE MOST IMPORTANT CHALLENGES IN LULC STUDIES IS CONSIDERED TO BE THE CREATION OF SIMULATION OF FUTURE CHANGE IN LULC THAT INVOLVE SPATIAL MODELING. THE PURPOSE OF THIS STUDY IS TO USE GIS AND REMOTE SENSING TO CLASSIFY LULC CLASSES IN DUHOK DISTRICT BETWEEN 1999 AND 2018, AND THEIR RESULTS CALCULATED USING AN INTEGRATED CELLULAR AUTOMATA AND CA-MARKOV CHAIN MODEL TO SIMULATE LULC CHANGES IN 2033. IN THIS STUDY, SATELLITE IMAGES FROM LANDSAT7 ETM AND LANDSAT8 OLI USED FOR DUHOK DISTRICT WHICH IS LOCATED IN THE NORTHERN PART OF IRAQ OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY (USGS) FOR THE PERIODS (1999 AND 2018) ANALYZED USING REMOTE SENSING AND GIS TECHNIQUES IN ADDITION TO THE GROUND CONTROL POINTS, FOR EACH CLASS 60 GROUND POINTS HAVE TAKEN. TO SIMULATE FUTURE LULC CHANGES FOR 2033, INTEGRATED APPROACHES OF CELLULAR AUTOMATA AND CA-MARKOV MODELS UTILIZED IN IDRISI SELVA SOFTWARE. THE OUTCOMES DEMONSTRATE THAT DUHOK DISTRICT HAS EXPERIENCED A TOTAL OF 184.91KM CHANGES DURING THE PERIOD (TABLE 4). THE PREDICTION ALSO INDICATES THAT THE CHANGES WILL EQUAL TO 235.4 KM BY 2033 (TABLE 8). SOIL AND GRASS CONSTITUTES THE MAJORITY OF CHANGES AMONG LULC CLASSES AND ARE INCREASING CONTINUOUSLY. THE ACHIEVED KAPPA VALUES FOR THE MODEL ACCURACY ASSESSMENT HIGHER THAN 0.93 AND 0.85 FOR 1999 AND 2018 RESPECTIVELY SHOWED THE MODEL’S CAPABILITY TO FORECAST FUTURE LULC CHANGES IN DUHOK DISTRICT. THUS, ANALYZING TRENDS OF LULC CHANGES FROM PAST TO NOW AND PREDICT FUTURE APPLYING CA-MARKOV MODEL CAN PLAY AN IMPORTANT ROLE IN LAND USE PLANNING, POLICY MAKING, AND MANAGING RANDOMLY UTILIZED LULC CLASSES IN THE PROPOSED STUDY AREA


2020 ◽  
Author(s):  
Ismael Abdulrahman Ismael Abdulrahman Abdulrahman ◽  
shamal

AbstractTHE PROCESS OF SPATIOTEMPORAL CHANGES IN LAND USE LAND COVER (LULC) AND PREDICTING THEIR FUTURE CHANGES ARE HIGHLY IMPORTANT FOR LULC MANAGERS. ONE OF THE MOST IMPORTANT CHALLENGES IN LULC STUDIES IS CONSIDERED TO BE THE CREATION OF SIMULATION OF FUTURE CHANGE IN LULC THAT INVOLVE SPATIAL MODELING. THE PURPOSE OF THIS STUDY IS TO USE GIS AND REMOTE SENSING TO CLASSIFY LULC CLASSES IN DUHOK DISTRICT BETWEEN 1999 AND 2018, AND THEIR RESULTS CALCULATED USING AN INTEGRATED CELLULAR AUTOMATA AND CA-MARKOV CHAIN MODEL TO SIMULATE LULC CHANGES IN 2033. IN THIS STUDY, SATELLITE IMAGES FROM LANDSAT7 ETM AND LANDSAT8 OLI USED FOR DUHOK DISTRICT WHICH IS LOCATED IN THE NORTHERN PART OF IRAQ OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY (USGS) FOR THE PERIODS (1999 AND 2018) ANALYZED USING REMOTE SENSING AND GIS TECHNIQUES IN ADDITION TO THE GROUND CONTROL POINTS, FOR EACH CLASS 60 GROUND POINTS HAVE TAKEN. TO SIMULATE FUTURE LULC CHANGES FOR 2033, INTEGRATED APPROACHES OF CELLULAR AUTOMATA AND CA-MARKOV MODELS UTILIZED IN IDRISI SELVA SOFTWARE. THE OUTCOMES DEMONSTRATE THAT DUHOK DISTRICT HAS EXPERIENCED A TOTAL OF 184.91KM CHANGES DURING THE PERIOD (TABLE 4). THE PREDICTION ALSO INDICATES THAT THE CHANGES WILL EQUAL TO 235.4 KM BY 2033 (TABLE 8). SOIL AND GRASS CONSTITUTES THE MAJORITY OF CHANGES AMONG LULC CLASSES AND ARE INCREASING CONTINUOUSLY. THE ACHIEVED KAPPA VALUES FOR THE MODEL ACCURACY ASSESSMENT HIGHER THAN 0.93 AND 0.85 FOR 1999 AND 2018 RESPECTIVELY SHOWED THE MODEL’S CAPABILITY TO FORECAST FUTURE LULC CHANGES IN DUHOK DISTRICT. THUS, ANALYZING TRENDS OF LULC CHANGES FROM PAST TO NOW AND PREDICT FUTURE APPLYING CA-MARKOV MODEL CAN PLAY AN IMPORTANT ROLE IN LAND USE PLANNING, POLICY MAKING, AND MANAGING RANDOMLY UTILIZED LULC CLASSES IN THE PROPOSED STUDY AREA.


Author(s):  
Raquel Faria de Deus ◽  
José António Tenedório ◽  
Jorge Rocha

In this chapter, a hybrid approach integrating cellular automata (CA), fuzzy logic, logistic regression, and Markov chains for modelling and prediction of land-use and land-cover (LULC) change at the local scale, using geographic information with fine spatial resolution is presented. A spatial logistic regression model was applied to determine the transition rules that were used by a conventional CA model. The overall dimension of LULC change was estimated using a Markov chain model. The proposed CA-based model (termed CAMLucc) in combination with physical variables and land-use planning data was applied to simulate LULC change in Portimão, Portugal between 1947 and 2010 and to predict its future spatial patterns for 2020 and 2025. The main results of this research show that Portimão has been facing massive growth in artificial surfaces, particularly near the main urban settlements and along the coastal area, and reveal an early and intensive urban sprawl over time.


2021 ◽  
Vol 15 (2) ◽  
pp. 297-308
Author(s):  
Obinna Obiora-Okeke

Land use and land cover (LULC) changes in Ogbese watershed due to urbanization implies increased areas of low infiltration. This results to higher flow rates downstream the watershed. This study estimates the changes in peak flow rates at the watershed’s outlet for present and future LULC. Rainfall-runoff simulation was achieved with Hydrologic Engineering Centre-Hydrologic Modeling System (HEC-HMS) version 4.2 while future LULC was projected with Markov Chain model. Rainfall inputs to the hydrologic model were obtained from intensity-duration-frequency curves for Ondo state. Landsat 7, Enhanced Thematic mapper plus (ETM+) image and Landsat 8 operational land imager (OLI) with path 190 and row 2 were used to generate LULC images for the years 2002, 2015 and 2019. Six LULC classes were extracted as follows: built up area, bare surface, vegetation, wetland, rock outcrop and waterbody.  Future LULC in year 2025 and 2029 were projected with Markov Chain model. The model prediction was verified with Nash Sutcliffe Efficiency index (NSE). NSE value of 0.79 was calculated indicating LULC changes in the watershed was Markovian. Results show that built up area cover in 2019 is projected to increase by 26.1% in 2024 and 39.9% in 2029 and wetland is projected to decreased by 1.2% in 2024 and 2.3% by 2029. Runoff peaks for these LULC projections indicate increase by 0.24% in 2024 and 1.19% in 2029 at the watershed’s outlets for 100-year return period rainfall.


Earth ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 845-870
Author(s):  
Kikombo Ilunga Ngoy ◽  
Feng Qi ◽  
Daniela J. Shebitz

This study analyzed the changes of land use and land cover (LULC) in New Jersey in the United States from 2007 to 2012. The goal was to identify the driving factors of these changes and to project the five-year trend to 2100. LULC data was obtained from the New Jersey Department of Environmental Protection. The original 86 classes were reclassified to 11 classes. Data analysis and projection were performed using TerrSet 2020. Results from 2007 to 2012 showed that the rate of LULC changes was relatively small. Most changes happened to brush/grasslands, mixed forest lands, farmlands and urban/developed lands. Urban/developed lands and the mixed-forest cover gained while farmlands lost. Using a multi-layer perceptron–Markov chain (MLP–MC) model, we projected the 2015 LULC and validated by actual data to produce a 2100 LULC. Changes from 2012 to 2100 showed that urban/developed lands, as well as brush/grasslands, would continue to gain, while farmlands would lose, although the projected landscape texture would likely be identical to the 2012 landscape. Human and natural factors were discussed. It was concluded that the MLP–MC model could be a useful model to predict short-term LULC change. Unexpected factors are likely to interfere in a long-term projection.


2021 ◽  
Vol 17 (1) ◽  
pp. 12-26
Author(s):  
A.F. Chukwuka ◽  
A. Alo ◽  
O.J. Aigbokhan

This study set out to assess the dynamic characteristics of the Ikere forest reserve landscape between 1985 and 2017 using remote sensing data and spatial metrics. Landscape of the study area maintained complex patterns of spatial heterogeneity over the years. Forest cover loss to other land cover types results in new large non-forest area at increasing rate. As at the year 2017, the changes in land cover types were not yet at equilibrium, thus the need to determine the future forest cover extent using a three-way markov Chain model. The decrease in number of patches of forest land (NumP) with increase in its mean patch size (MPS) shows that the forest is becoming a single unit probably due to clearing of existing patches of forest trees. The decrease in class diversity and evenness (SDI and SEI) of the general landscape over the years strengthens this assertion. The findings of this study would be very helpful to government and other stakeholders responsible for ensuring sustainable forest and general environment. Keyword: Landscape, Spatial metrics, sustainable forest and Environment


2021 ◽  
Vol 9 (1) ◽  
pp. 15-27
Author(s):  
Saleha Jamal ◽  
Md Ashif Ali

Wetlands are often called as biological “supermarket” and “kidneys of the landscape” due to their multiple functions, including water purification, water storage, processing of carbon and other nutrients, stabilization of shorelines and support of aquatic lives. Unfortunately, although being dynamic and productive ecosystem, these wetlands have been affected by human induced land use changes. India is losing wetlands at the rate of 2 to 3 per cent each year due to over-population, direct deforestation, urban encroachment, over fishing, irrigation and agriculture etc (Prasher, 2018). The present study tries to investigate the nature and degree of land use/land cover transformation, their causes and resultant effects on Chatra Wetland. To fulfil the purpose of the study, GIS and remote sensing techniques have been employed. Satellite imageries have been used from United States Geological Survey (USGS) Landsat 7 Enhanced Thematic Mapper plus and Landsat 8 Operational Land Imager for the year 2003 and 2018. Cloud free imageries of 2003 and 2018 have been downloaded from USGS (https://glovis.usgs.gov/) for the month of March and April respectively. Image processing, supervised classificationhas been done in ArcGis 10.5 and ERDAS IMAGINE 14. The study reveals that the settlement hasincreased by about 90.43 per cent in the last 15 years around the Chatra wetland within the bufferzone of 2 Sq km. Similarly agriculture, vegetation, water body, swamp and wasteland witnessed asignificant decrease by 5.94 per cent, 57.69 per cent, 26.64 per cent 4.52 per cent and 55.27 per centrespectively from 2003 to 2018.


2021 ◽  
Author(s):  
Nitesh Kumar Mourya ◽  
Sana Rafi ◽  
Saima Shamoo

Abstract Land Use Land Cover (LULC) dynamics analysis is critical and should be done regularly. It draws attention to LULC developments that can be addressed before they become unmanageable disasters or circumstances. For the years 2000, 2010, and 2020, LULC change analysis was carried out in Jaipur City, Rajasthan, India. The LULC maps were created using Landsat data through a visual interpretation technique at a scale of 1:50,000. These maps were classified into vegetation, agriculture, built-up areas, barren land, and water bodies. LULC was predicted by extrapolating the current LULC change pattern. Using a Cellular Automata-Markov Chain Model (CA Markov) integrated with road network, the current LULC change trend was extrapolated and utilized to estimate the LULC map for the years 2020, 2030, 2040, and 2050. The strategy was validated by estimating LULC change for 2020 and comparing it to the actual LULC map for that year. The urban area contributed to 4. 75% in 2000 of the total area in Jaipur city. The percentage of area under urban class has increased to 9.68% in 2010 and 12.96% in 2020. The prediction based on 2000-2010 and 2010-2020 has shown an unprecedented decadal growth in the built-up area till 2050. The prediction based on the 2000-2010 period has shown a rise of 92.04 % during 2020-2030, 77.13 % during 2030-2040 and, 64.34 % during 2040-2050. The prediction based on the 2010-2020 period has shown a rise of 102.42% during 2020-2030, 73.56% during 2030-2040 and, 54.47 % during 2040-2050. This study is, therefore, calls for policy interventions to manage population and urban growth.


Sign in / Sign up

Export Citation Format

Share Document