scholarly journals Analyzing and Predicting Land Use and Land Cover Changes in New Jersey Using Multi-Layer Perceptron–Markov Chain Model

Earth ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 845-870
Author(s):  
Kikombo Ilunga Ngoy ◽  
Feng Qi ◽  
Daniela J. Shebitz

This study analyzed the changes of land use and land cover (LULC) in New Jersey in the United States from 2007 to 2012. The goal was to identify the driving factors of these changes and to project the five-year trend to 2100. LULC data was obtained from the New Jersey Department of Environmental Protection. The original 86 classes were reclassified to 11 classes. Data analysis and projection were performed using TerrSet 2020. Results from 2007 to 2012 showed that the rate of LULC changes was relatively small. Most changes happened to brush/grasslands, mixed forest lands, farmlands and urban/developed lands. Urban/developed lands and the mixed-forest cover gained while farmlands lost. Using a multi-layer perceptron–Markov chain (MLP–MC) model, we projected the 2015 LULC and validated by actual data to produce a 2100 LULC. Changes from 2012 to 2100 showed that urban/developed lands, as well as brush/grasslands, would continue to gain, while farmlands would lose, although the projected landscape texture would likely be identical to the 2012 landscape. Human and natural factors were discussed. It was concluded that the MLP–MC model could be a useful model to predict short-term LULC change. Unexpected factors are likely to interfere in a long-term projection.

2021 ◽  
Vol 15 (2) ◽  
pp. 297-308
Author(s):  
Obinna Obiora-Okeke

Land use and land cover (LULC) changes in Ogbese watershed due to urbanization implies increased areas of low infiltration. This results to higher flow rates downstream the watershed. This study estimates the changes in peak flow rates at the watershed’s outlet for present and future LULC. Rainfall-runoff simulation was achieved with Hydrologic Engineering Centre-Hydrologic Modeling System (HEC-HMS) version 4.2 while future LULC was projected with Markov Chain model. Rainfall inputs to the hydrologic model were obtained from intensity-duration-frequency curves for Ondo state. Landsat 7, Enhanced Thematic mapper plus (ETM+) image and Landsat 8 operational land imager (OLI) with path 190 and row 2 were used to generate LULC images for the years 2002, 2015 and 2019. Six LULC classes were extracted as follows: built up area, bare surface, vegetation, wetland, rock outcrop and waterbody.  Future LULC in year 2025 and 2029 were projected with Markov Chain model. The model prediction was verified with Nash Sutcliffe Efficiency index (NSE). NSE value of 0.79 was calculated indicating LULC changes in the watershed was Markovian. Results show that built up area cover in 2019 is projected to increase by 26.1% in 2024 and 39.9% in 2029 and wetland is projected to decreased by 1.2% in 2024 and 2.3% by 2029. Runoff peaks for these LULC projections indicate increase by 0.24% in 2024 and 1.19% in 2029 at the watershed’s outlets for 100-year return period rainfall.


2020 ◽  
Author(s):  
shamal

AbstractTHE PROCESS OF SPATIOTEMPORAL CHANGES IN LAND USE LAND COVER (LULC) AND PREDICTING THEIR FUTURE CHANGES ARE HIGHLY IMPORTANT FOR LULC MANAGERS. ONE OF THE MOST IMPORTANT CHALLENGES IN LULC STUDIES IS CONSIDERED TO BE THE CREATION OF SIMULATION OF FUTURE CHANGE IN LULC THAT INVOLVE SPATIAL MODELING. THE PURPOSE OF THIS STUDY IS TO USE GIS AND REMOTE SENSING TO CLASSIFY LULC CLASSES IN DUHOK DISTRICT BETWEEN 1999 AND 2018, AND THEIR RESULTS CALCULATED USING AN INTEGRATED CELLULAR AUTOMATA AND CA-MARKOV CHAIN MODEL TO SIMULATE LULC CHANGES IN 2033. IN THIS STUDY, SATELLITE IMAGES FROM LANDSAT7 ETM AND LANDSAT8 OLI USED FOR DUHOK DISTRICT WHICH IS LOCATED IN THE NORTHERN PART OF IRAQ OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY (USGS) FOR THE PERIODS (1999 AND 2018) ANALYZED USING REMOTE SENSING AND GIS TECHNIQUES IN ADDITION TO THE GROUND CONTROL POINTS, FOR EACH CLASS 60 GROUND POINTS HAVE TAKEN. TO SIMULATE FUTURE LULC CHANGES FOR 2033, INTEGRATED APPROACHES OF CELLULAR AUTOMATA AND CA-MARKOV MODELS UTILIZED IN IDRISI SELVA SOFTWARE. THE OUTCOMES DEMONSTRATE THAT DUHOK DISTRICT HAS EXPERIENCED A TOTAL OF 184.91KM CHANGES DURING THE PERIOD (TABLE 4). THE PREDICTION ALSO INDICATES THAT THE CHANGES WILL EQUAL TO 235.4 KM BY 2033 (TABLE 8). SOIL AND GRASS CONSTITUTES THE MAJORITY OF CHANGES AMONG LULC CLASSES AND ARE INCREASING CONTINUOUSLY. THE ACHIEVED KAPPA VALUES FOR THE MODEL ACCURACY ASSESSMENT HIGHER THAN 0.93 AND 0.85 FOR 1999 AND 2018 RESPECTIVELY SHOWED THE MODEL’S CAPABILITY TO FORECAST FUTURE LULC CHANGES IN DUHOK DISTRICT. THUS, ANALYZING TRENDS OF LULC CHANGES FROM PAST TO NOW AND PREDICT FUTURE APPLYING CA-MARKOV MODEL CAN PLAY AN IMPORTANT ROLE IN LAND USE PLANNING, POLICY MAKING, AND MANAGING RANDOMLY UTILIZED LULC CLASSES IN THE PROPOSED STUDY AREA


2020 ◽  
Author(s):  
Ismael Abdulrahman Ismael Abdulrahman Abdulrahman ◽  
shamal

AbstractTHE PROCESS OF SPATIOTEMPORAL CHANGES IN LAND USE LAND COVER (LULC) AND PREDICTING THEIR FUTURE CHANGES ARE HIGHLY IMPORTANT FOR LULC MANAGERS. ONE OF THE MOST IMPORTANT CHALLENGES IN LULC STUDIES IS CONSIDERED TO BE THE CREATION OF SIMULATION OF FUTURE CHANGE IN LULC THAT INVOLVE SPATIAL MODELING. THE PURPOSE OF THIS STUDY IS TO USE GIS AND REMOTE SENSING TO CLASSIFY LULC CLASSES IN DUHOK DISTRICT BETWEEN 1999 AND 2018, AND THEIR RESULTS CALCULATED USING AN INTEGRATED CELLULAR AUTOMATA AND CA-MARKOV CHAIN MODEL TO SIMULATE LULC CHANGES IN 2033. IN THIS STUDY, SATELLITE IMAGES FROM LANDSAT7 ETM AND LANDSAT8 OLI USED FOR DUHOK DISTRICT WHICH IS LOCATED IN THE NORTHERN PART OF IRAQ OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY (USGS) FOR THE PERIODS (1999 AND 2018) ANALYZED USING REMOTE SENSING AND GIS TECHNIQUES IN ADDITION TO THE GROUND CONTROL POINTS, FOR EACH CLASS 60 GROUND POINTS HAVE TAKEN. TO SIMULATE FUTURE LULC CHANGES FOR 2033, INTEGRATED APPROACHES OF CELLULAR AUTOMATA AND CA-MARKOV MODELS UTILIZED IN IDRISI SELVA SOFTWARE. THE OUTCOMES DEMONSTRATE THAT DUHOK DISTRICT HAS EXPERIENCED A TOTAL OF 184.91KM CHANGES DURING THE PERIOD (TABLE 4). THE PREDICTION ALSO INDICATES THAT THE CHANGES WILL EQUAL TO 235.4 KM BY 2033 (TABLE 8). SOIL AND GRASS CONSTITUTES THE MAJORITY OF CHANGES AMONG LULC CLASSES AND ARE INCREASING CONTINUOUSLY. THE ACHIEVED KAPPA VALUES FOR THE MODEL ACCURACY ASSESSMENT HIGHER THAN 0.93 AND 0.85 FOR 1999 AND 2018 RESPECTIVELY SHOWED THE MODEL’S CAPABILITY TO FORECAST FUTURE LULC CHANGES IN DUHOK DISTRICT. THUS, ANALYZING TRENDS OF LULC CHANGES FROM PAST TO NOW AND PREDICT FUTURE APPLYING CA-MARKOV MODEL CAN PLAY AN IMPORTANT ROLE IN LAND USE PLANNING, POLICY MAKING, AND MANAGING RANDOMLY UTILIZED LULC CLASSES IN THE PROPOSED STUDY AREA.


2020 ◽  
Vol 9 (4) ◽  
pp. 71
Author(s):  
Ashti I. Abdulrahman ◽  
Shamal A. Ameen

The process of spatiotemporal changes in land use land cover (LULC) and predicting their future changes are highly important for LULC managers. one of the most important challenges in LULC studies is considered to be the creation of simulation of future change in LULC that involve spatial modeling. the purpose of this study is to use GIS and remote sensing to classify LULC classes in Duhok district between 1999 and 2018, and their results calculated using an integrated cellular automaton and ca-markov chain model to simulate LULC changes in 2033. in this study, satellite images from landsat7 ETM and landsat8 oli used for Duhok district which is located in the northern part of Iraq obtained from united states geological survey (USGS) for the periods (1999 and 2018) analyzed using remote sensing and GIS techniques in addition to the ground control points, for each class 60 ground points have taken. to simulate future LULC changes for 2033, integrated approaches of cellular automata and ca-markov models utilized in Idrisi selva software. the outcomes demonstrate that Duhok district has experienced a total of 184.91km changes during the period (table 4). the prediction also indicates that the changes will equal to 235.4 km by 2033 (table 8). soil and grass constitute the majority of changes among LULC classes and are increasing continuously. the achieved kappa values for the model accuracy assessment higher than 0.93 and 0.85 for 1999 and 2018 respectively showed the model’s capability to forecast future LULC changes in Duhok district. thus, analyzing trends of LULC changes from past to now and predict future applying ca-markov model can play an important role in land use planning, policy making, and managing randomly utilized LULC classes in the proposed study area.


Author(s):  
Battsengel Vandansambuu ◽  
Tsolmon Davaa ◽  
Byambakhuu Gantumur ◽  
Myagmartseren Purevtseren ◽  
Otgonbayar Lkhagva ◽  
...  

2020 ◽  
Vol 12 (24) ◽  
pp. 10452
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Roknisadeh Hamed ◽  
Akram Ahmed Noman Alabsi

Monitoring land use/land cover (LULC) change dynamics plays a crucial role in formulating strategies and policies for the effective planning and sustainable development of rapidly growing cities. Therefore, this study sought to integrate the cellular automata and Markov chain model using remotely sensed data and geographical information system (GIS) techniques to monitor, map, and detect the spatio-temporal LULC change in Zaria city, Nigeria. Multi-temporal satellite images of 1990, 2005, and 2020 were pre-processed, geo-referenced, and mapped using the supervised maximum likelihood classification to examine the city’s historical land cover (1990–2020). Subsequently, an integrated cellular automata (CA)–Markov model was utilized to model, validate, and simulate the future LULC scenario using the land change modeler (LCM) of IDRISI-TerrSet software. The change detection results revealed an expansion in built-up areas and vegetation of 65.88% and 28.95%, respectively, resulting in barren land losing 63.06% over the last three decades. The predicted LULC maps of 2035 and 2050 indicate that these patterns of barren land changing into built-up areas and vegetation will continue over the next 30 years due to urban growth, reforestation, and development of agricultural activities. These results establish past and future LULC trends and provide crucial data useful for planning and sustainable land use management.


2021 ◽  
Vol 19 (5) ◽  
pp. 1-14
Author(s):  
Audace Ntakirutimana ◽  
◽  
Chaiwiwat Vansarochana ◽  

Gitega District has experienced significant land use and land cover changes due to human activity. This has increased land degradation and environmental issues. However, there is no data on LULC change to guide land-use planning. This study assessed the rate and magnitude of LULC change over the last 35 years and also simulated future scenarios using Geoinformatics. In the first step, five LULC classes were extracted from satellite images from 1984, 2002, and 2019 using the supervised classification method. Overall accuracy and Kappa statistics of more than 85% and 82% respectively were achieved with 30 reference samples. Change analysis highlighted by Land Change Modeler (1984-2019) indicated a significant increase in Agriculture of 94 km2, a slight increase in Shrub Land and Built-up Area of 5.5 km2 and 2 km2, respectively; and a steep decrease in Trees Cover and Grass Land of 62.5 km2 and 39 km2, respectively. Markov Chain and CA-Markov models were further calibrated to simulate LULC changes in 2038 and 2057 using the 2019 base map. Evaluation and analysis of 2019-2057 simulation results showed a moderate agreement of 75% for Kappa and the same trends of LULC change: Trees Cover, Grass Land, and Shrub Land will decrease by 11.5 km2, 13 km2, 11.5 km2 respectively, whereas Agriculture and Built-up Area will increase by 30 km2 and 6 km2 respectively in 2057. These study outcomes can support decision-making towards restoration measures of land degradation and long-term environmental conservation in the region.


Sign in / Sign up

Export Citation Format

Share Document