Simulation of time-dependent viscous flows using central and upwind-biased finite-difference techniques

1990 ◽  
Author(s):  
E. HALL ◽  
R. DELANEY ◽  
R. PLETCHER
1979 ◽  
Vol 101 (4) ◽  
pp. 437-443 ◽  
Author(s):  
A. Kent Stiffler ◽  
R. R. Tapia

A strip gas film bearing with inherently compensated inlets is analyzed to determine the effect of disturbance amplitude on its dynamic performance. The governing Reynolds’ equation is solved using finite-difference techniques. The time dependent load capacity is represented by a Fourier series up to and including the third harmonics. For the range of amplitudes investigated the linear stiffness was independent of the amplitude, and the linear damping was inversely proportional to (1 − ε2)1.5 where ε is the amplitude relative to the film thickness.


2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.


1977 ◽  
Vol 99 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Jean-Pierre Veuillot

The equations of the through flow are obtained by an asymptotic theory valid when the blade pitch is small. An iterative method determines the meridian stream function, the circulation, and the density. The various equations are discretized in an orthogonal mesh and solved by classical finite difference techniques. The calculation of the steady transonic blade-to-blade flow is achieved by a time marching method using the MacCormack scheme. The space discretization is obtained either by a finite difference approach or by a finite volume approach. Numerical applications are presented.


1976 ◽  
Vol 78 (2) ◽  
pp. 355-383 ◽  
Author(s):  
H. Fasel

The stability of incompressible boundary-layer flows on a semi-infinite flat plate and the growth of disturbances in such flows are investigated by numerical integration of the complete Navier–;Stokes equations for laminar two-dimensional flows. Forced time-dependent disturbances are introduced into the flow field and the reaction of the flow to such disturbances is studied by directly solving the Navier–Stokes equations using a finite-difference method. An implicit finitedifference scheme was developed for the calculation of the extremely unsteady flow fields which arose from the forced time-dependent disturbances. The problem of the numerical stability of the method called for special attention in order to avoid possible distortions of the results caused by the interaction of unstable numerical oscillations with physically meaningful perturbations. A demonstration of the suitability of the numerical method for the investigation of stability and the initial growth of disturbances is presented for small periodic perturbations. For this particular case the numerical results can be compared with linear stability theory and experimental measurements. In this paper a number of numerical calculations for small periodic disturbances are discussed in detail. The results are generally in fairly close agreement with linear stability theory or experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document