Electromechanical Modeling of a Multifunctional Energy Harvesting Wing Spar

Author(s):  
Steven Anton ◽  
Daniel Inman
Author(s):  
Ya Wang ◽  
Daniel J. Inman

The increasing need for lightweight structures in Unmanned Aerial Vehicle (UAV) applications raise issues involving gust alleviation. Here we examine the gust alleviation problem using a self-sensing, self-charging, and self-actuating structure. The basic idea is that the wing itself is able to harvest and store energy from the normal vibrations during flight along with any available sunlight. If the wing experiences any strong, unexpected wind gust, it will sense the increased vibration levels and provide vibration control to maintain its stability. In this paper, a multifunctional wing spar is designed, which integrates a flexible solar cell array, piezoceramic wafers, a thin film battery and an electronics module into a composite structure. This multifunctional wing spar therefore carries on the functions of energy harvesting and storage, as well as the functions of gust alleviation via piezoelectric materials. The piezoceramic wafers act as sensors, actuators, and harvesters. The global modulus and stiffness of this multifunctional wing spar are estimated using both the rule of mixtures and the cross section transformation method. These values are then used in an Euler-Bernoulli cantilever beam model of the multifunctional spar. The first two dominant modes are predicted analytically for the distributed parameter model. The finite element method is employed to confirm the analytical eigenvalues estimation. Special attention is given to the self-contained gust alleviation with the goal of using harvested energy. The gust signals are generated using a Gaussian white noise source n (t) ∼ N (0,1) fed into a linear filter, with the required intensity, scale lengths, and power spectral density (PSD) function for the given flight velocity and height. The Dryden PSD function is implemented for atmospheric turbulence modeling. The recently developed reduced energy control law is combined with a positive strain feedback controller to minimize the actuation energy and the dissipated heat energy. Positive feedback operation amplifiers (op-amps) and voltage buffer op-amps are implemented for two dominant mode gust disturbance controls. This work builds off of our previous research in self-charging structures and holds promise for improving UAV performance in wind gust alleviation.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Eustaquio Martínez-Cisneros ◽  
Luis A. Velosa-Moncada ◽  
Jesús A. Del Angel-Arroyo ◽  
Luz Antonio Aguilera-Cortés ◽  
Carlos Arturo Cerón-Álvarez ◽  
...  

Microelectromechanical system (MEMS)-based piezoelectric energy harvesting (PEH) devices can convert the mechanical vibrations of their surrounding environment into electrical energy for low-power sensors. This electrical energy is amplified when the operation resonant frequency of the PEH device matches with the vibration frequency of its surrounding environment. We present the electromechanical modeling of two MEMS-based PEH devices to transform the mechanical vibrations of domestic washing machines into electrical energy. These devices have resonant structures with a T shape, which are formed by an array of multilayer beams and a ultraviolet (UV)-resin seismic mass. The first layer is a substrate of polyethylene terephthalate (PET), the second and fourth layers are Al and Pt electrodes, and the third layer is piezoelectric material. Two different types of piezoelectric materials (ZnO and PZT-5A) are considered in the designs of PEH devices. The mechanical behavior of each PEH device is obtained using analytical models based on the Rayleigh–Ritz and Macaulay methods, as well as the Euler–Bernoulli beam theory. In addition, finite element method (FEM) models are developed to predict the electromechanical response of the PEH devices. The results of the mechanical behavior of these devices obtained with the analytical models agree well with those of the FEM models. The PEH devices of ZnO and PZT-5A can generate up to 1.97 and 1.35 µW with voltages of 545.32 and 45.10 mV, and load resistances of 151.12 and 1.5 kΩ, respectively. These PEH devices could supply power to internet of things (IoT) sensors of domestic washing machines.


Micromachines ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 211 ◽  
Author(s):  
Ernesto Elvira-Hernández ◽  
Luis Uscanga-González ◽  
Arxel de León ◽  
Francisco López-Huerta ◽  
Agustín Herrera-May

Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the electromechanical modeling of a pVEH microdevice with a novel resonant structure for air conditioning vents at office buildings. This electromechanical modeling includes different multilayers and cross-sections of the microdevice resonator as well as the air damping. This microdevice uses a flexible substrate and it does not include toxics materials. The microdevice has a resonant structure formed by multilayer beams and U-shape proof mass of UV-resin (730 μm thickness). The multilayer beams contain flexible substrates (160 μm thickness) of polyethylene terephthalate (PET), two aluminum electrodes (100 nm thickness), and a ZnO layer (2 μm thickness). An analytical model is developed to predict the first bending resonant frequency and deflections of the microdevice. This model considers the Rayleigh and Macaulay methods, and the Euler-Bernoulli beam theory. In addition, the electromechanical behavior of the microdevice is determined through the finite element method (FEM) models. In these FEM models, the output power of the microdevice is obtained using different sinusoidal accelerations. The microdevice has a resonant frequency of 60.3 Hz, a maximum deflection of 2.485 mm considering an acceleration of 1.5 m/s2, an output voltage of 2.854 V and generated power of 37.45 μW with a load resistance of 217.5 kΩ. An array of pVEH microdevices connected in series could be used to convert the displacements of air conditioning vents at office buildings into voltages for electronic devices and sensors.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2012 ◽  
Vol 2 (5) ◽  
pp. 252-255
Author(s):  
Rudresha K J Rudresha K J ◽  
◽  
Girisha G K Girisha G K

Sign in / Sign up

Export Citation Format

Share Document