INVESTIGATION OF THE IMPACT OF POLYMER COMPONENTS OF CONCRETE ON CORROSION RESISTANCE

Author(s):  
Marina Drapaluk ◽  
◽  
Volodymyr Pylypenko ◽  
Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2621
Author(s):  
Aneta Bartkowska

The paper presents the results of a study of the microstructure, chemical composition, microhardness and corrosion resistance of Cr-B coatings produced on Vanadis 6 tool steel. In this study, chromium and boron were added to the steel surface using a laser alloying process. The main purpose of the study was to determine the impact of those chemical elements on surface properties. Chromium and boron as well as their mixtures were prepared in various proportions and then were applied on steel substrate in the form of precoat of 100 µm thickness. Depending on the type of precoat used and laser processing parameters, changes in microstructure and properties were observed. Coatings produced using precoat containing chromium and boron mixture were characterized by high microhardness (900 HV0.05–1300 HV0.005) while maintaining good corrosion resistance. It was also found that too low laser beam power contributed to the formation of cracks and porosity.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1581
Author(s):  
Rafał Babilas ◽  
Monika Spilka ◽  
Katarzyna Młynarek ◽  
Wojciech Łoński ◽  
Dariusz Łukowiec ◽  
...  

The effect of iron and yttrium additions on glass forming ability and corrosion resistance of Al88Y8-xFe4+x (x = 0, 1, 2 at.%) alloys in the form of ingots and melt-spun ribbons was investigated. The crystalline multiphase structure of ingots and amorphous-crystalline structure of ribbons were examined by a number of analytical techniques including X-ray diffraction, Mössbauer spectroscopy, and transmission electron microscopy. It was confirmed that the higher Fe additions contributed to formation of amorphous structures. The impact of chemical composition and structure of alloys on their corrosion resistance was characterized by electrochemical tests in 3.5% NaCl solution at 25 °C. The identification of the mechanism of chemical reactions taking place during polarization test along with the morphology and internal structure of the surface oxide films generated was performed. It was revealed that the best corrosion resistance was achieved for the Al88Y7Fe5 alloy in the form of ribbon, which exhibited the lowest corrosion current density (jcorr = 0.09 μA/cm2) and the highest polarization resistance (Rp = 96.7 kΩ∙cm2).


Author(s):  
S. Kuroda ◽  
T. Fukushima ◽  
T. Kodama ◽  
M. Sasaki

Abstract 316L stainless steel and Hastelloy C alloy powders were sprayed by an HVOF apparatus onto mild steel substrates. The microstructure, pore size distribution, composition and corrosion resistance of thus obtained coatings were evaluated experimentally. Corrosion resistance in sea-water was examined by monitoring the impedance and corrosion potential of samples immersed in artificial sea-water at 300 K over a period of more than 3 months and also by polarization measurement. It was found that the stainless coatings composed mainly of plastically deformed particles and some splats which were molten at the impact. By increasing the combustion pressure, the porosity as measured by mercury porosimeter could be reduced to below 1%. In comparison, Hastelloy C deposits sprayed under the standard condition were so dense that its porosity could not be measured by the porosimeter. The polarization curve and the results of impedance monitoring both exemplified that the Hastelloy C coatings possess much superior corrosion resistance to the stainless coatings in sea-water, which was attributed to the higher density and better adhesion of the Ni-base alloy coatings.


CORROSION ◽  
10.5006/3813 ◽  
2021 ◽  
Author(s):  
Donovan Verkens ◽  
Reynier Revilla ◽  
Mert Günyüz ◽  
Cemil Işıksaçan ◽  
Herman Terryn ◽  
...  

The AA3003 alloy is widely used as fin material in heat exchangers. The life time of these heat exchangers is mostly determined by their corrosion properties. Twin roll casting (TRC) of AA3003 material is known to often result in the formation of a macrosegregation area of alloying elements towards the centre plane of the casted strip (centre line segregation = CLS). Considering the potential exposure of cross-sectional areas of TRC material in the heat exchanger fin application, and the relatively high corrosion susceptibility of the CLS, the study of this region is of key importance to understand the microstructural effects on the resulting corrosion mechanisms and kinetics for these materials. Typically the alloys are homogenized to bring the microstructures closer to an equilibrium state, but the impact of this heat treatment on the corrosion properties is insufficiently studied. Therefore, this study investigates the effect of different homogenization procedures on the corrosion properties of the CLS and the interaction of the intermetallic particles with the surrounding aluminium matrix. This work shows that the pitting corrosion resistance is greatly dependent on the homogenization temperature, with better corrosion resistance obtained with higher temperature, especially near the CLS. This difference in corrosion behaviour is completely attributed to a difference in microstructure and not to an oxide layer effect. Furthermore, it is observed that not only temperature will have a large influence on the corrosion resistance, but duration of the heat treatment as well.


2011 ◽  
Vol 391-392 ◽  
pp. 768-772 ◽  
Author(s):  
Li Yang ◽  
Zhan Zhe Zhang

The weldablity of dissimilar steel between 16MnR and S31803 was analyzed and researched. By means of optical microscope (OM), the microstructure of the weld joint was investigated, which is welded by tungsten inert gas arc backing welding (GTAW) and manual arc filling welding (SMAW). The mechanical properties and corrosion resistance of the welded joint was also tested and studied. Results indicate that austenite and acicular ferrite distribute uniformly in the weld metal, which strengths the toughness and ductility of the joint. The austenite content in weld is higher than that in over-heated zone of S31803.The SMAW joint structure is coarsening than that of GTAW and has more austenite content. It is also observed that there are a decarburization layer and a carbon-enriched zone nearby the fusion line. And very small amounts of the third phase of harmful metal phase are found in the fusion zone of S31803 side. The welded joint shows the excellent mechanical properties and corrosion resistance. The impact toughness of the weld metal is higher than in HAZ of 16MnR side, and the impact toughness at GTAW side and in HAZ is superior to the SMAW side.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3788
Author(s):  
Henryk Kania ◽  
Mariola Saternus ◽  
Jan Kudláček

The paper presents results of studies on the impact of bismuth and tin additions to the Zn-AlNi bath on microstructure and corrosion resistance of hot dip galvanizig coatings. The structure at high magnifications on the top surface and cross-section of coatings received in the Zn-AlNiBiSn bath was revealed and the microanalysis EDS (energy dispersion spectroscopy) of chemical composition was determined. The corrosion resistance of the coatings was tested relatively in a neutral salt spray test (NSS), and tests in a humid atmosphere containing SO2. Electrochemical parameters of coatings corrosion were determined. It was found that Zn-AlNiBiSn coatings show lower corrosion resistance in comparison with the coatings received in the Zn-AlNi bath without Sn and Bi alloying additions. Structural research has shown the existence of precipitations of Sn-Bi alloy in the coating. It was found that Sn-Bi precipitations have more electropositive potential in relation to zinc, which promotes the formation of additional corrosion cells.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4360
Author(s):  
Jialei Dai ◽  
Zixuan Yang ◽  
Qian Liu

Herein, we investigated the effects of Ce on the corrosion behavior of NdFeB magnets in 3.5% NaCl solutions using electrochemical tests, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, and scanning Kelvin probe force microscopy (SKPFM). We demonstrated that Ce markedly enhances the corrosion resistance of NdFeB magnets. Ce primarily replaces Nd in the Nd-rich phase instead of matrix phase, increasing the surface potential of the Nd-rich phase. An increase in the Ce content from 0 to 5.21 wt%, decreased the potential difference between the main phase and (Nd, Ce)-rich phase from 350.2 mV to 97.7 mV; therefore, the corrosion resistance of the magnetic materials increased. The corrosion resistance constituted the Nd-rich phase < the void < metal matrix. Moreover, based on the results of the study, we discussed the impact mechanism of additions of Ce on the corrosion resistance of the magnets.


2011 ◽  
Vol 121-126 ◽  
pp. 2965-2968
Author(s):  
Cheng Zhao ◽  
Kun Luo ◽  
Chang Yin Gao

According to the stress state and corrosion resistance of bearing deputy campaigns,NO.5 bearing deputy campaign was selected as research subject.The work including design, processing, finite element load calculation, friction torque before and after corrosion of bearing deputy campaign samples were carried out according to similarity theory. Friction torque calculations of bearing deputy campaign before and after corrosion were 2.9×106N•mm and 3.2×106N•mm respectively. Compared with the friction torque before corrosion,the friction torque of bearing deputy campaign was increased by 10.4% because of seawater corrosion.


2014 ◽  
Vol 548-549 ◽  
pp. 177-181
Author(s):  
Ping Wang ◽  
Zhao Hui Yin ◽  
Han Tao Ren ◽  
Song Xu ◽  
Dong Wei Ma

The losses due to copper corrosion in H2S atmospheric corrosion have attracted much focus. It’s important to improve copper corrosion resistance that the corrosion law, corrosion mechanism and characteristics were studied in H2S environment. This paper reviewed the corrosion behavior of copper, analyzed the impact of environment factors and corrosion analysis tools. Through evaluating and improving corrosion by external factors, including improving corrosive environment, using coating protection and adding corrosion inhibitors, appropriate corrosion measures were taken to extend the life of the equipment.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
L. Chmielak ◽  
L. Mujica Roncery ◽  
P. Niederhofer ◽  
S. Weber ◽  
W. Theisen

AbstractThe use of interstitial elements has been a key factor for the development of different kinds of steels. However, this aspect has been little explored in the field of high entropy alloys (HEAs). In this investigation, the effect of carbon and nitrogen in a near-equiatomic CrMnFeCoNi HEA is studied, analyzing their impact on the microstructure, and mechanical properties from 77K to 673K, as well as wear, and corrosion resistance. Carbon and nitrogen are part of the FCC solid solution and contribute to the formation of precipitates. An increase in the yield and ultimate tensile strength accompanied with a decrease in the ductility are the main effects of C and N. The impact toughness of the interstitial-free material is higher than that of C and C+N alloyed systems. Compared to CrNi and CrMn austenitic steels, the wear resistance of the alloys at room temperature is rather low. The surface corrosion resistance of HEAs is comparable to austenitic steels; nevertheless HEAs are more susceptible to pitting in chloride containing solutions.


Sign in / Sign up

Export Citation Format

Share Document