Achieving High Performance Molecular Rectification through Fast Screening Alkanethiol Carboxylate-Metal Complexes Electro-Active Unites
Achieving high rectifying performance of molecular scale diode devices through synthetic chemistry and device construction remain a formidable challenge due to the complexity of the charge transport process and the device structure. We demonstrated here high-performance molecular rectification realized in self-assembled monolayer (SAM) based device by low-cost and fast screening the electroactive units. SAMs of commercial available carboxylate terminated alkane thiols on gold substrate, coordinated with a variety of metal ions, structures denoting as Au-S-(CH2)n-1COO-Mm+ (Cn+Mm+), where n=11, 12, 13, 14, 16, 18 and Mm+=Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, were prepared and junctions were measured using a eutectic indiumgallium alloy top contact (EGaIn). The C18+Ca2+ and C18+Zn2+ junctions were found to afford a record high rectification ratio (RR) of 756 at ±1.5 V. Theoretical analysis based on single level tunneling model shows that optimized combination of the asymmetry voltage division, energy barrier and the coupling of carboxylate-metal complex with electrode. Our method described here represent a general strategy for fast, cheap and effective exploration of the metal complex chemical space for high-performance molecular diodes devices.