deep blue
Recently Published Documents


TOTAL DOCUMENTS

1599
(FIVE YEARS 511)

H-INDEX

81
(FIVE YEARS 17)

2022 ◽  
Vol 22 (1) ◽  
pp. 535-560
Author(s):  
Jerónimo Escribano ◽  
Enza Di Tomaso ◽  
Oriol Jorba ◽  
Martina Klose ◽  
Maria Gonçalves Ageitos ◽  
...  

Abstract. Atmospheric mineral dust has a rich tri-dimensional spatial and temporal structure that is poorly constrained in forecasts and analyses when only column-integrated aerosol optical depth (AOD) is assimilated. At present, this is the case of most operational global aerosol assimilation products. Aerosol vertical distributions obtained from spaceborne lidars can be assimilated in aerosol models, but questions about the extent of their benefit upon analyses and forecasts along with their consistency with AOD assimilation remain unresolved. Our study thoroughly explores the added value of assimilating spaceborne vertical dust profiles, with and without the joint assimilation of dust optical depth (DOD). We also discuss the consistency in the assimilation of both sources of information and analyse the role of the smaller footprint of the spaceborne lidar profiles in the results. To that end, we have performed data assimilation experiments using dedicated dust observations for a period of 2 months over northern Africa, the Middle East, and Europe. We assimilate DOD derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) on board Suomi National Polar-Orbiting Partnership (SUOMI-NPP) Deep Blue and for the first time Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP)-based LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies (LIVAS) pure-dust extinction coefficient profiles on an aerosol model. The evaluation is performed against independent ground-based DOD derived from AErosol RObotic NETwork (AERONET) Sun photometers and ground-based lidar dust extinction profiles from the Cyprus Clouds Aerosol and Rain Experiment (CyCARE) and PREparatory: does dust TriboElectrification affect our ClimaTe (Pre-TECT) field campaigns. Jointly assimilating LIVAS and Deep Blue data reduces the root mean square error (RMSE) in the DOD by 39 % and in the dust extinction coefficient by 65 % compared to a control simulation that excludes assimilation. We show that the assimilation of dust extinction coefficient profiles provides a strong added value to the analyses and forecasts. When only Deep Blue data are assimilated, the RMSE in the DOD is reduced further, by 42 %. However, when only LIVAS data are assimilated, the RMSE in the dust extinction coefficient decreases by 72 %, the largest improvement across experiments. We also show that the assimilation of dust extinction profiles yields better skill scores than the assimilation of DOD under an equivalent sensor footprint. Our results demonstrate the strong potential of future lidar space missions to improve desert dust forecasts, particularly if they foresee a depolarization lidar channel to allow discrimination of desert dust from other aerosol types.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 348
Author(s):  
Yuting Wu ◽  
Yanan Zhu ◽  
Zewei Zhang ◽  
Chongguang Zhao ◽  
Junpeng He ◽  
...  

Multi-resonance thermal activated delayed fluorescence (MR-TADF) has been promising with large oscillator strength and narrow full width at half maxima of luminescence, overcoming the compromise of emission intensity and energy criteria of traditional charge transfer TADF frameworks. However, there are still limited theoretical investigations on the excitation mechanism and systematic molecular manipulation of MR-TADF structures. We systematically study the highly localized excitation (LE) characteristics based on typical blue boron-nitrogen (BN) MR-TADF emitters and prove the potential triangular core with theoretical approaches. A design strategy by extending the planar π-conjugate core structure is proposed to enhance the multiple resonance effects. Moreover, several substituted groups are introduced to the designed core, achieving color-tunable functions with relatively small energy split and strong oscillator strength simultaneously. This work provides a theoretical direction for molecular design strategy and a series of potential candidates for highly efficient BN MR-TADF emitters.


Author(s):  
Xiaodong Peng ◽  
Cheng Yan ◽  
Fengjun Chun ◽  
Wen Li ◽  
Xiankan Zeng ◽  
...  

Author(s):  
Sue O’Connor ◽  
Shimona Kealy ◽  
Lucas Wattimena ◽  
Adam Black ◽  
Muhammad Husni ◽  
...  
Keyword(s):  
Rock Art ◽  

Author(s):  
Yifei Yue ◽  
Shengnan Liu ◽  
Baohua Zhang ◽  
Zhong-Min Su ◽  
Dongxia Zhu

All-inorganic perovskites (AIP) with three primary colors emission are all-important for AIP application in many field. However, poor spectral stability seriously hinders the development of blue-emission AIP. Here, we achieved...


2022 ◽  
Author(s):  
Lijie Wu ◽  
Jinhao Xu ◽  
Zewei Zhang ◽  
Wangjuan Xue ◽  
Yaowu He ◽  
...  

The design of blue emitters is still desired for high performance organic light-emitting diodes (OLEDs). In this work, two blue emitters with the fused triphenylamine (FTPA) moiety, PIAN-FTPA and PI-FTPA,...


Soft Matter ◽  
2022 ◽  
Author(s):  
Joydip De ◽  
Ishan Sarkar ◽  
Rohit Ashok Kumar Yadav ◽  
Indu Bala ◽  
Santosh Prasad Gupta ◽  
...  

Correction for ‘Luminescent columnar discotics as highly efficient emitters in pure deep-blue OLEDs with an external quantum efficiency of 4.7%’ by Joydip De et al., Soft Matter, 2022, DOI: 10.1039/d1sm01558c.


2022 ◽  
Vol 34 (1) ◽  
pp. 2270002
Author(s):  
Hyoungcheol Lim ◽  
Seung‐Je Woo ◽  
Yeon Hee Ha ◽  
Yun‐Hi Kim ◽  
Jang‐Joo Kim

Sign in / Sign up

Export Citation Format

Share Document