scholarly journals Monadic Bounded Algebras

2021 ◽  
Author(s):  
◽  
Galym Akishev

<p>The object of study of the thesis is the notion of monadic bounded algebras (shortly, MBA's). These algebras are motivated by certain natural constructions in free (first-order) monadic logic and are related to free monadic logic in the same way as monadic algebras of P. Halmos to monadic logic (Chapter 1). Although MBA's come from logic, the present work is in algebra. Another important way of approaching MBA's is via bounded graphs, namely, the complex algebra of a bounded graph is an MBA and vice versa. The main results of Chapter 2 are two representation theorems: 1) every model is a basic MBA and every basic MBA is isomorphic to a model; 2) every MBA is isomorphic to a subdirect product of basic MBA's. As a consequence, every MBA is isomorphic to a subdirect product of models. This result is thought of as an algebraic version of semantical completeness theorem for free monadic logic. Chapter 3 entirely deals with MBA-varieties. It is proved by the method of filtration that every MBA-variety is generated by its finite special members. Using connections in terms of bounded morphisms among certain bounded graphs, it is shown that every MBA-variety is generated by at most three special (not necessarily finite) MBA's. After that each MBA-variety is equationally characterized. Chapter 4 considers finitely generated MBA's. We prove that every finitely generated MBA is finite (an upper bound on the number of elements is provided) and that the number of elements of a free MBA on a finite set achieves its upper bound. Lastly, a procedure for constructing a free MBA on any finite set is given.</p>

2021 ◽  
Author(s):  
◽  
Galym Akishev

<p>The object of study of the thesis is the notion of monadic bounded algebras (shortly, MBA's). These algebras are motivated by certain natural constructions in free (first-order) monadic logic and are related to free monadic logic in the same way as monadic algebras of P. Halmos to monadic logic (Chapter 1). Although MBA's come from logic, the present work is in algebra. Another important way of approaching MBA's is via bounded graphs, namely, the complex algebra of a bounded graph is an MBA and vice versa. The main results of Chapter 2 are two representation theorems: 1) every model is a basic MBA and every basic MBA is isomorphic to a model; 2) every MBA is isomorphic to a subdirect product of basic MBA's. As a consequence, every MBA is isomorphic to a subdirect product of models. This result is thought of as an algebraic version of semantical completeness theorem for free monadic logic. Chapter 3 entirely deals with MBA-varieties. It is proved by the method of filtration that every MBA-variety is generated by its finite special members. Using connections in terms of bounded morphisms among certain bounded graphs, it is shown that every MBA-variety is generated by at most three special (not necessarily finite) MBA's. After that each MBA-variety is equationally characterized. Chapter 4 considers finitely generated MBA's. We prove that every finitely generated MBA is finite (an upper bound on the number of elements is provided) and that the number of elements of a free MBA on a finite set achieves its upper bound. Lastly, a procedure for constructing a free MBA on any finite set is given.</p>


2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


Author(s):  
J. A. Gerhard

In the paper (4) of Green and Rees it was established that the finiteness of finitely generated semigroups satisfying xr = x is equivalent to the finiteness of finitely generated groups satisfying xr−1 = 1 (Burnside's Problem). A group satisfying x2 = 1 is abelian and if it is generated by n elements, it has at most 2n elements. The free finitely generated semigroups satisfying x3 = x are thus established to be finite, and in fact the connexion with the corresponding problem for groups can be used to give an upper bound on the size of these semigroups. This is a long way from an algorithm for a solution of the word problem however, and providing such an algorithm is the purpose of the present paper. The case x = x3 is of interest since the corresponding result for x = x2 was done by Green and Rees (4) and independently by McLean(6).


2015 ◽  
Vol 29 (1) ◽  
pp. 93-117
Author(s):  
Mieczysław Kula ◽  
Małgorzata Serwecińska

AbstractThe paper is devoted to the communication complexity of lattice operations in linearly ordered finite sets. All well known techniques ([4, Chapter 1]) to determine the communication complexity of the infimum function in linear lattices disappoint, because a gap between the lower and upper bound is equal to O(log2n), where n is the cardinality of the lattice. Therefore our aim will be to investigate the communication complexity of the function more carefully. We consider a family of so called interval protocols and we construct the interval protocols for the infimum. We prove that the constructed protocols are optimal in the family of interval protocols. It is still open problem to compute the communication complexity of constructed protocols but the numerical experiments show that their complexity is less than the complexity of known protocols for the infimum function.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


1974 ◽  
Vol 26 (4) ◽  
pp. 769-782 ◽  
Author(s):  
Anke Dietze ◽  
Mary Schaps

The use of computers to investigate groups has mainly been restricted to finite groups. In this work, a method is given for finding all subgroups of finite index in a given group, which works equally well for finite and for infinite groups. The basic object of study is the finite set of cosets. §2 reviews briefly the representation of a subgroup by permutations of its cosets, introduces the concept of normal coset numbering, due independently to M. Schaps and C. Sims, and describes a version of the Todd-Coxeter algorithm. §3 contains a version due to A. Dietze of a process which was communicated to J. Neubuser by C. Sims, as well as a proof that the process solves the problem stated in the title. A second such process, developed independently by M. Schaps, is described in §4. §5 gives a method for classifying the subgroups by conjugacy, and §6, a suggestion for generalization of the methods to permutation and matrix groups.


1991 ◽  
Vol 34 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

LetEbe an injective module over the commutative Noetherian ringA, and letabe an ideal ofA. TheA-module (0:Eα) has a secondary representation, and the finite set AttA(0:Eα) of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets (AttA(0:Eαn))n∈Nis ultimately constant. This result is analogous to a theorem of M. Brodmann that, ifMis a finitely generatedA-module, then the sequence of sets (AssA(M/αnM))n∈Nis ultimately constant.


1975 ◽  
Vol 19 (2) ◽  
pp. 238-246 ◽  
Author(s):  
J. Berman ◽  
ph. Dwinger

If L is a pseudocomplemented distributive lattice which is generated by a finite set X, then we will show that there exists a subset G of L which is associated with X in a natural way that ¦G¦ ≦ ¦X¦ + 2¦x¦ and whose structure as a partially ordered set characterizes the structure of L to a great extent. We first prove in Section 2 as a basic fact that each element of L can be obtained by forming sums (joins) and products (meets) of elements of G only. Thus, L considered as a distributive lattice with 0,1 (the operation of pseudocomplementation deleted), is generated by G. We apply this to characterize for example, the maximal homomorphic images of L in each of the equational subclasses of the class Bω of pseudocomplemented distributive lattices, and also to find the conditions which have to be satisfied by G in order that X freely generates L.


Author(s):  
Wencai Liu

Abstract In this paper, we consider discrete Schrödinger operators of the form, $$\begin{equation*} (Hu)(n) = u({n+1})+u({n-1})+V(n)u(n). \end{equation*}$$We view $H$ as a perturbation of the free operator $H_0$, where $(H_0u)(n)= u({n+1})+u({n-1})$. For $H_0$ (no perturbation), $\sigma _{\textrm{ess}}(H_0)=\sigma _{\textrm{ac}}(H)=[-2,2]$ and $H_0$ does not have eigenvalues embedded into $(-2,2)$. It is an interesting and important problem to identify the perturbation such that the operator $H_0+V$ has one eigenvalue (finitely many eigenvalues or countable eigenvalues) embedded into $(-2,2)$. We introduce the almost sign type potentials and develop the Prüfer transformation to address this problem, which leads to the following five results. 1: We obtain the sharp spectral transition for the existence of irrational type eigenvalues or rational type eigenvalues with even denominators.2: Suppose $\limsup _{n\to \infty } n|V(n)|=a&lt;\infty .$ We obtain a lower/upper bound of $a$ such that $H_0+V$ has one rational type eigenvalue with odd denominator.3: We obtain the asymptotical behavior of embedded eigenvalues around the boundaries of $(-2,2)$.4: Given any finite set of points $\{ E_j\}_{j=1}^N$ in $(-2,2)$ with $0\notin \{ E_j\}_{j=1}^N+\{ E_j\}_{j=1}^N$, we construct the explicit potential $V(n)=\frac{O(1)}{1+|n|}$ such that $H=H_0+V$ has eigenvalues $\{ E_j\}_{j=1}^N$.5: Given any countable set of points $\{ E_j\}$ in $(-2,2)$ with $0\notin \{ E_j\}+\{ E_j\}$, and any function $h(n)&gt;0$ going to infinity arbitrarily slowly, we construct the explicit potential $|V(n)|\leq \frac{h(n)}{1+|n|}$ such that $H=H_0+V$ has eigenvalues $\{ E_j\}$.


1987 ◽  
Vol 52 (3) ◽  
pp. 786-792
Author(s):  
Michael H. Albert ◽  
Ross Willard

AbstractLet K be a finite set of finite structures. We give a syntactic characterization of the property: every element of K is injective in ISP(K). We use this result to establish that is injective in ISP() for every two-element algebra .


Sign in / Sign up

Export Citation Format

Share Document