scholarly journals Measuring the Effects of Microplastics on Sponges

2021 ◽  
Author(s):  
◽  
Clifford Alan Baird

<p>Microplastics (MP’s) are ubiquitous throughout the marine environment, and are derived from either direct production or from the fragmentation (to <5mm) of larger plastic pollution. Recently concern has intensified as the extent of MP pollution and its presence in the marine environment has been highlighted. Literature concerning concentrations of microplastics indicates an increasing occurrence in the marine environment, from coastal beaches to deep sea sediments. In addition, the effects microplastics have on marine organisms are well documented, with studies ranging from large pelagic animals to benthic filter feeders. However to date, there are few data on how MPs influence Porifera.  Sponges are an important component of temperate benthic ecosystems, providing a range of important functional roles. Sponges are able to adapt to many environments by exploiting a variety of food sources, from dissolved organic matter to small crustaceans. Regardless of this, sponges feed primarily on picoplankton, and are able to retain up to 99% of these from seawater. The impact microplastics have on these suspension feeders is becoming of increasing concern, and previous research has centred primarily on sponge feeding or responses to sediments. As such, this thesis is the first to focus on the metabolic responses of sponges to MPs. To examine this, two response variables were measured: O₂ consumption (Respiration) and feeding (Retention efficiency).  To examine the effects of MP on sponge respiration, two temperate sponge species (Tethya bergquistae and Crella incrustans) were exposed to two different sized plastic particles (1 μm and 6 μm) at two different concentrations (200,000 and 400,000 beads per mL). Results indicate that sponges are resilient to MP pollution. The only significant result was the effect of MP size on the respiration rates on Tethya bergquistae (P = 0.001), but there were no other significant main effects or interactions.  Marine particulates come in many shapes and sizes, as such the retention abilities of temperate sponges were tested after exposure to different types and sizes of particulates. This was achieved by subjecting the same two sponge species (Crella incrustans and Tethya bergquistae) to two microplastic (1 μm & 6 μm), two sediment (1 μm & 6 μm) and two “Food” (raw sea water and Isochrysis galbana) treatments. This experiment showed some significant retention differences, but these differences were difficult to explain and largely inconclusive. This has highlighted the need for further investigation into the effects of: mixed treatments (i.e. sediments + plastics together) and varying plastic shapes (sphere + fibre + fragment). Finally, there is a crucial gap in knowledge regarding the fate of microplastics after ingestion by sponges.  This research outlines the potential for temperate sponges to be resilient to microplastics particles when considering respiration rates. In addition, this study also outlines the variable nature of Crella incrustans and Tethya bergquistae concerning particulate retention. As the MP concentrations used in this thesis are very high and are unlikely to be found in New Zealand in the near future, this thesis therefore demonstrates the capability for sponges to be resilient to microplastic pollution. The outcomes of my thesis highlight the importance of understanding the impacts of microplastics on benthic organisms. The marine environment is dynamic and organisms are susceptible to a multitude of stressors. As such, there is a need to explore interactions between multiple factors at the same time.</p>

2021 ◽  
Author(s):  
◽  
Clifford Alan Baird

<p>Microplastics (MP’s) are ubiquitous throughout the marine environment, and are derived from either direct production or from the fragmentation (to <5mm) of larger plastic pollution. Recently concern has intensified as the extent of MP pollution and its presence in the marine environment has been highlighted. Literature concerning concentrations of microplastics indicates an increasing occurrence in the marine environment, from coastal beaches to deep sea sediments. In addition, the effects microplastics have on marine organisms are well documented, with studies ranging from large pelagic animals to benthic filter feeders. However to date, there are few data on how MPs influence Porifera.  Sponges are an important component of temperate benthic ecosystems, providing a range of important functional roles. Sponges are able to adapt to many environments by exploiting a variety of food sources, from dissolved organic matter to small crustaceans. Regardless of this, sponges feed primarily on picoplankton, and are able to retain up to 99% of these from seawater. The impact microplastics have on these suspension feeders is becoming of increasing concern, and previous research has centred primarily on sponge feeding or responses to sediments. As such, this thesis is the first to focus on the metabolic responses of sponges to MPs. To examine this, two response variables were measured: O₂ consumption (Respiration) and feeding (Retention efficiency).  To examine the effects of MP on sponge respiration, two temperate sponge species (Tethya bergquistae and Crella incrustans) were exposed to two different sized plastic particles (1 μm and 6 μm) at two different concentrations (200,000 and 400,000 beads per mL). Results indicate that sponges are resilient to MP pollution. The only significant result was the effect of MP size on the respiration rates on Tethya bergquistae (P = 0.001), but there were no other significant main effects or interactions.  Marine particulates come in many shapes and sizes, as such the retention abilities of temperate sponges were tested after exposure to different types and sizes of particulates. This was achieved by subjecting the same two sponge species (Crella incrustans and Tethya bergquistae) to two microplastic (1 μm & 6 μm), two sediment (1 μm & 6 μm) and two “Food” (raw sea water and Isochrysis galbana) treatments. This experiment showed some significant retention differences, but these differences were difficult to explain and largely inconclusive. This has highlighted the need for further investigation into the effects of: mixed treatments (i.e. sediments + plastics together) and varying plastic shapes (sphere + fibre + fragment). Finally, there is a crucial gap in knowledge regarding the fate of microplastics after ingestion by sponges.  This research outlines the potential for temperate sponges to be resilient to microplastics particles when considering respiration rates. In addition, this study also outlines the variable nature of Crella incrustans and Tethya bergquistae concerning particulate retention. As the MP concentrations used in this thesis are very high and are unlikely to be found in New Zealand in the near future, this thesis therefore demonstrates the capability for sponges to be resilient to microplastic pollution. The outcomes of my thesis highlight the importance of understanding the impacts of microplastics on benthic organisms. The marine environment is dynamic and organisms are susceptible to a multitude of stressors. As such, there is a need to explore interactions between multiple factors at the same time.</p>


2020 ◽  
Vol 65 (2) ◽  
pp. 69-86
Author(s):  
Andreea Lup ◽  
Mihai Gorea ◽  
Denisa Bruhs

Plastic debris represents a contemporary point of concern for the marine environment, being discharged into the ocean at an alarming scale. However, the quantity of waste that is found in the ocean is unknown. Where does this waste come from, and where does it end up are questions that scientists and researchers are still trying to accurately answer. The majority of plastic products that make their way into the ocean come mainly from human activities. Most of them land on beaches, and eventually find their way into the ocean, being washed away by waves and tides. To assess the impact of these pollutants that are found in the marine environment, it is necessary to determine the concentration of the chemicals accumulating in the biomass, and the effects they cause. There are numerous biological effects which lead to many obvious diseases in marine species. Also, these harmful effects determine changes in community structure, the modification of the habitat and local or complete extinction of many aquatic species. This review aims to lay out the present situation of the marine environment, and the effects of the pollution caused by industrialization and urbanization. Different types of remediation approaches have been discussed, such as physical remediation techniques. Besides that, the role of numerous bacteria and fungi that are capable of breaking down these chemicals that surround us, has been highlighted and point at some of the bioremediation technologies that are currently available.


Yuridika ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 171
Author(s):  
Ulya Yasmine Prisandani ◽  
Adzhana Luthfia Amanda

The ocean and its marine resources play an important role in providing sources of livelihood to the Indonesian people. Indonesia is currently dealing with a major plastic waste problem, and this, in turn, also impacts the marine environment since the plastic waste ends up in the ocean. The issue of marine pollution is regulated under international conventions such as the MARPOL and UNCLOS, though none is specifically addressing marine plastic waste. Moreover, Indonesia has enacted several regulations to manage marine plastic waste, including Presidential Regulation Number 83 of 2018 on Marine Waste Management, and Indonesian citizens have taken an active role in reducing plastic waste. However, stricter and more specific regulations are needed as guidelines for the long-term strategy in handling marine plastic pollution in Indonesia, and proper analysis on the impact of such regulation towards the stakeholders and affected parties would be needed. 


Author(s):  
Professor John Swarbrooke

This focus of this book is on the marine environment, but one cannot understand the impact of tourism on the marine environment without looking at the ocean fringe, the interface between the land and the ocean. In this chapter we will concentrate on how things that happen on land in relation to tourism impact on the marine environment. However, it is also important to note that this relationship is two-way and that tourism on land is affected by the ocean in terms of coastal erosion, for example, as well as being impacted by changes in the temperature of sea water and rising sea levels.


1995 ◽  
Vol 32 (9-10) ◽  
pp. 85-94 ◽  
Author(s):  
Michael O. Angelidis

The impact of the urban effluents of Mytilene (Lesvos island, Greece) on the receiving coastal marine environment, was evaluated by studying the quality of the city effluents (BOD5, COD, SS, heavy metals) and the marine sediments (grain size, organic matter, heavy metals). It was found that the urban effluents of Mytilene contain high organic matter and suspended particle load because of septage discharge into the sewerage network. Furthermore, although the city does not host important industrial activity, its effluents contain appreciable metal load, which is mainly associated with the particulate phase. The city effluents are discharged into the coastal marine environment and their colloidal and particulate matter after flocculation settles to the bottom, where is incorporated into the sediments. Over the years, the accumulation of organic matter and metals into the harbour mud has created a non-point pollution source in the relatively non-polluted coastal marine environment of the island. Copper and Zn were the metals which presented the higher enrichment in the sediments of the inner harbour of Mytilene.


Author(s):  
Fatemeh Alizadeh ◽  
Navid Kharghani ◽  
Carlos Guedes Soares

Glass/Vinylester composite laminates are comprehensively characterised to assess its impact response behaviour under moisture exposure in marine structures. An instrumented drop weight impact machine is utilised to determine the impact responses of dry and immersed specimens in normal, salted and sea water. The specimens, which had three different thicknesses, were subjected to water exposure for a very long period of over 20 months before tested in a low-velocity impact experiment. Water uptake was measured primarily to study the degradation profiles of GRP laminates after being permeated by water. Matrix dissolution and interfacial damage observed on the laminates after prolonged moisture exposure while the absorption behaviour was found typically non-Fickian. The weight of the composite plates firstly increased because of water diffusion up to month 15 and then decreased due to matrix degradation. The specimens with 3, 6 and 9 mm thickness exhibited maximum water absorption corresponding to 2.6%, 0.7% and 0.5% weight gain, respectively. In general, the results indicated that water uptake and impact properties were affected by thickness and less by water type. Impact properties of prolonged immersed specimens reduced remarkably, and intense failure modes detected almost in all cases. The least sensitive to impact damage were wet specimens with 9 mm thickness as they indicated similar maximum load and absorbed energy for different impact energies.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2329
Author(s):  
Leda-Eleni Tympa ◽  
Klytaimnistra Katsara ◽  
Panagiotis N. Moschou ◽  
George Kenanakis ◽  
Vassilis M. Papadakis

The outburst of plastic pollution in terrestrial ecosystems poses a potential threat to agriculture and food safety. Studies have already provided evidence for the uptake of plastic microparticles by several plant species, accompanied by numerous developmental effects, using fluorescence labelling techniques. Here, we introduce the implementation of confocal Raman spectroscopy, a label-free method, for the effective detection of microplastics (MPs) accumulation in the roots of a common edible root vegetable plant, Raphanus sativus, after treatment with acrylonitrile butadiene styrene (ABS) powder. We also demonstrate the concomitant occurrence of phenotypic defects in the polymer-treated plants. We anticipate that this work can provide new insights not only into the extent of the impact this widespread phenomenon has on crop plants but also on the methodological requirements to address it.


2019 ◽  
Vol 33 (6) ◽  
pp. 827-832
Author(s):  
Pingyuan Zhang ◽  
Bruce E. Branham

AbstractExperiments were conducted to evaluate the impact of spray volume, nozzle type, adjuvants, the presence of dew, and their interactions on foliar retention of creeping bentgrass. Tartrazine, a common food dye, was used as a tracer in this study. Increasing spray volume from 95 L ha−1 to 1,500 L ha−1 decreased foliar retention efficiency from 98% to approximately 85%. Compared with flat-fan nozzles, air-induction nozzles delivered similar retention efficiency at all spray volumes evaluated. However, flat-fan nozzles provided higher uniformity and more thorough coverage. Adding nonionic surfactants, organosilicone adjuvants, or methylated seed oils at typical concentrations yielded retention efficiency of approximately 90% to 93% regardless of spray volumes. In contrast, with water alone, increasing spray volume reduced retention efficiency from 95.9% to 87.3%. Simulated dew applied at 1,950 L ha−1 increased retention efficiency by approximately 3% when spray application volume was 190 L ha−1, while no difference was observed at 750 L ha−1. The presence of dew reduced the impact of adjuvants on retention efficiency. Large quantities of dew, 3,800 L ha−1, did reduce retention efficiency.


2016 ◽  
Vol 51 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Jelena Čulin ◽  
Toni Bielić

The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.


Sign in / Sign up

Export Citation Format

Share Document