scholarly journals Análise de acurácia para o mapeamento de áreas queimadas utilizando uma cena VIIRS 1Km e classificação por Random Forest

2021 ◽  
Vol 14 (6) ◽  
pp. 3225
Author(s):  
Juarez Antonio da Silva Júnior ◽  
Ubiratan Joaquim da Silva Júnior ◽  
Admilson Da Penha Pacheco

A disponibilidade gratuita de dados de sensoriamento remoto em áreas atingidas por incêndios florestais em escala global oferece a oportunidade de geração sistemática de produtos terrestres de média resolução espacial, porém as conhecidas limitações de precisão é objeto de estudo em todo o mundo. Este artigo tem como objetivo analisar a acurácia da detecção de áreas queimadas utilizando o classificador Random Forest (RF) por meio de uma cena do sensor Radiômetro de Imagem Infravermelho Visível (VIIRS) (1Km) em quatro pontos da savana brasileira. Os resultados foram validados através dos produtos de referência espacial de áreas queimadas: Aq30m, Fire_cci e MCD64A1 por meio de uma abordagem estratificada possibilitando a amostragem dos dados no espaço e tempo. Os modelos de RF avaliados com seus parâmetros de entrada, em que, incluiu-se 400 árvores e um atributo, fornecendo uma taxa de erro abaixo de 4%. Os resultados mostraram que o mapeamento validado com o produto Aq30m apresentou importantes estimativas de Coeficiente de Sorensen-Dice enquanto a validação realizada entre os modelos globais, o MCD64A1 mostrou-se com maior exatidão (>50%) principalmente em feições de áreas queimadas de grandes proporções (> 200Km²). Em particular, a análise sugere que a validação de produtos de área queimada sempre deve estar ligada ao tempo mínimo da data dos dados de validação e o tamanho da área atingida pelo fogo. Os resultados mostram que esta abordagem é muito útil para ser usado para determinar áreas de floresta queimada.      Accuracy analysis for mapping burnt areas using a 1Km VIIRS scene and Random Forest classification A B S T R A C TThe availability of remote sensing data with medium spatial resolution has offered several mapping possibilities for areas affected by forest fires on the Earth's surface. In this context, the analysis of sensor spatial accuracy limitations has been the subject of global research. The objective of this study was to analyze the mapping accuracy of the VIIRS sensor on board the NOAA satellite, using the Random Forest (RF) classifier for the detection of burned areas, in four points of the Chapada dos Veadeiros National Park - Goiás, inserted in the Brazilian savanna. The methodology consisted in validating the classification using the Sorensen-Dice coefficient (SD) in a stratified approach, using as reference the products: Aq30m, Fire_cci and MCD64A1. As a result, the RF models, included 400 trees and one attribute, with an error of less than 4%. Among the global models, the MCD64A1 presented a significant accuracy, greater than 50%, especially in features of burned areas greater than 200Km². Thus, the data suggest that the quality of accuracy of the validation process of mapping products for burned areas is associated with the minimum time interval of availability of validation data and the size of the area affected by fire. Based on this, the results show effectiveness in using the RF algorithm on medium spatial resolution images for fire detection in seasonally dry forests, such as the Cerrado.Keywords: Cerrado, fires, Random Forest.

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7346
Author(s):  
Jinning Wang ◽  
Kun Li ◽  
Yun Shao ◽  
Fengli Zhang ◽  
Zhiyong Wang ◽  
...  

Lodging, a commonly occurring rice crop disaster, seriously reduces rice quality and production. Monitoring rice lodging after a typhoon event is essential for evaluating yield loss and formulating suitable remedial policies. The availability of Sentinel-1 and Sentinel-2 open-access remote sensing data provides large-scale information with a short revisit time to be freely accessed. Data from these sources have been previously shown to identify lodged crops. In this study, therefore, Sentinel-1 and Sentinel-2 data after a typhoon event were combined to enable monitoring of lodging rice to be quickly undertaken. In this context, the sensitivity of synthetic aperture radar (SAR) features (SF) and spectral indices (SI) extracted from Sentinel-1 and Sentinel-2 to lodged rice were analyzed, and a model was constructed for selecting optimal sensitive parameters for lodging rice (OSPL). OSPL has high sensitivity to lodged rice and strong ability to distinguish lodged rice from healthy rice. After screening, Band 11 (SWIR-1) and Band 12 (SWIR-2) were identified as optimal spectral indices (OSI), and VV, VV + VH and Shannon Entropy were optimal SAR features (OSF). Three classification results of lodging rice were acquired using the Random Forest classification (RFC) method based on OSI, OSF and integrated OSI–OSF stack images, respectively. Results indicate that an overall level of accuracy of 91.29% was achieved with the combination of SAR and optical optimal parameters. The result was 2.91% and 6.05% better than solely using optical or SAR processes, respectively.


2021 ◽  
Vol 13 (24) ◽  
pp. 5098
Author(s):  
Alexander M. Melancon ◽  
Andrew L. Molthan ◽  
Robert E. Griffin ◽  
John R. Mecikalski ◽  
Lori A. Schultz ◽  
...  

In response to Hurricane Florence of 2018, NASA JPL collected quad-pol L-band SAR data with the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument, observing record-setting river stages across North and South Carolina. Fully-polarized SAR images allow for mapping of inundation extent at a high spatial resolution with a unique advantage over optical imaging, stemming from the sensor’s ability to penetrate cloud cover and dense vegetation. This study used random forest classification to generate maps of inundation from L-band UAVSAR imagery processed using the Freeman–Durden decomposition method. An average overall classification accuracy of 87% is achieved with this methodology, with areas of both under- and overprediction for the focus classes of open water and inundated forest. Fuzzy logic operations using hydrologic variables are used to reduce the number of small noise-like features and false detections in areas unlikely to retain water. Following postclassification refinement, estimated flood extents were combined to an event maximum for societal impact assessments. Results from the Hurricane Florence case study are discussed in addition to the limitations of available validation data for accuracy assessments.


2016 ◽  
Vol 146 ◽  
pp. 370-385 ◽  
Author(s):  
Adam Hedberg-Buenz ◽  
Mark A. Christopher ◽  
Carly J. Lewis ◽  
Kimberly A. Fernandes ◽  
Laura M. Dutca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document