scholarly journals On Resolving Hop Domination in Graphs

2021 ◽  
Vol 14 (3) ◽  
pp. 1015-1023
Author(s):  
Jerson Saguin Mohamad ◽  
Helen M. Rara

A set S of vertices in a connected graph G is a resolving hop dominating set of G if S is a resolving set in G and for every vertex v ∈ V (G) \ S there exists u ∈ S such that dG(u, v) = 2. The smallest cardinality of such a set S is called the resolving hop domination number of G. This paper presents the characterizations of the resolving hop dominating sets in the join, corona and lexicographic product of two graphs and determines the exact values of their corresponding resolving hop domination number.

2021 ◽  
Vol 14 (3) ◽  
pp. 829-841
Author(s):  
Gerald Bacon Monsanto ◽  
Helen M. Rara

Let G be a connected graph. Brigham et al. [3] defined a resolving dominating setas a set S of vertices of a connected graph G that is both resolving and dominating. A set S ⊆ V (G) is a resolving restrained dominating set of G if S is a resolving dominating set of G and S = V (G) or hV (G) \ Si has no isolated vertex. In this paper, we characterize the resolving restrained dominating sets in the join, corona and lexicographic product of graphs and determine the resolving restrained domination number of these graphs.


Author(s):  
Gerald B. Monsanto ◽  
Helen M. Rara

Let [Formula: see text] be a connected graph. Brigham et al., Resolving domination in graphs, Math. Bohem. 1 (2003) 25–36 defined a resolving dominating set as a set [Formula: see text] of vertices of a connected graph [Formula: see text] that is both resolving and dominating. A resolving dominating is a [Formula: see text]-movable resolving dominating set of [Formula: see text] if for every [Formula: see text], either [Formula: see text] is a resolving dominating set or there exists a vertex [Formula: see text] such that [Formula: see text] is a resolving dominating set of [Formula: see text]. The minimum cardinality of a [Formula: see text]-movable resolving dominating set of [Formula: see text], denoted by [Formula: see text] is the [Formula: see text]-movable[Formula: see text]-domination number of [Formula: see text]. A [Formula: see text]-movable resolving dominating set with cardinality [Formula: see text] is called a [Formula: see text]-set of [Formula: see text]. In this paper, we characterize the [Formula: see text]-movable resolving dominating sets in the join and lexicographic product of two graphs and determine the bounds or exact values of the [Formula: see text]-movable resolving domination number of these graphs.


Author(s):  
A. Sadiquali ◽  
P. Arul Paul Sudhahar ◽  
V. Lakshmana Gomathi Nayagam

A collection of vertices in different connected graphs embraces a wholesome shift into a new collection with the properties of the couplets monophonic and dominating sets. The new collection of vertices and associated invariant with the new behavior of connected graphs are called as connected monophonic dominating set (cmd-set) and connected monophonic domination number (cmd-number), respectively. Certain initial results are studied. The cmd-number is characterized with some conditions. Some realization problems related to a connected graph by imposing conditions on the vertex count are also presented.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850075
Author(s):  
Yamilita M. Pabilona ◽  
Helen M. Rara

Let [Formula: see text] be a simple graph. A hop dominating set [Formula: see text] is called a connected hop dominating set of [Formula: see text] if the induced subgraph [Formula: see text] of [Formula: see text] is connected. The smallest cardinality of a connected hop dominating set of [Formula: see text], denoted by [Formula: see text], is called the connected hop domination number of [Formula: see text]. In this paper, we characterize the connected hop dominating sets in the join, corona and lexicographic product of graphs and determine the corresponding connected hop domination number of these graphs. The study of these concepts is motivated with a social network application.


2019 ◽  
Vol 12 (4) ◽  
pp. 1410-1425
Author(s):  
Imelda S. Aniversario ◽  
Sergio R. Canoy Jr. ◽  
Ferdinand P. Jamil

A set $S$ of vertices of a connected graph $G$ is a semitotal dominating set if every vertex in $V(G)\setminus S$ is adjacent to a vertex in $S$, and every vertex in $S$ is of distance at most $2$ from another vertex in $S$. A semitotal dominating set $S$ in $G$ is a secure semitotal dominating set if for every $v\in V(G)\setminus S$, there is a vertex $x\in S$ such that $x$ is adjacent to $v$ and  that $\left(S\setminus\{x\}\right)\cup \{v\}$ is a semitotal dominating set in $G$. In this paper, we characterize the semitotal dominating sets and the secure semitotal dominating sets in the join, corona and lexicographic product of graphs and determine their corresponding semitotal domination and secure semitotal domination numbers.


2021 ◽  
Vol 14 (3) ◽  
pp. 803-815
Author(s):  
Raicah Cayongcat Rakim ◽  
Helen M Rara

Let G = (V (G), E(G)) be a simple graph. A set S ⊆ V (G) is a perfect hop dominating set of G if for every v ∈ V (G) \ S, there is exactly one vertex u ∈ S such that dG(u, v) = 2. The smallest cardinality of a perfect hop dominating set of G is called the perfect hop domination number of G, denoted by γph(G). A perfect hop dominating set S ⊆ V (G) is called a total perfect hop dominating set of G if for every v ∈ V (G), there is exactly one vertex u ∈ S such that dG(u, v) = 2. The total perfect hop domination number of G, denoted by γtph(G), is the smallest cardinality of a total perfect hop dominating set of G. Any total perfect hop dominating set of G of cardinality γtph(G) is referred to as a γtph-set of G. In this paper, we characterize the total perfect hop dominating sets in the join, corona and lexicographic product of graphs and determine their corresponding total perfect hop domination number.


10.37236/953 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Adriana Hansberg ◽  
Dirk Meierling ◽  
Lutz Volkmann

A set $D\subseteq V$ of vertices is said to be a (connected) distance $k$-dominating set of $G$ if the distance between each vertex $u\in V-D$ and $D$ is at most $k$ (and $D$ induces a connected graph in $G$). The minimum cardinality of a (connected) distance $k$-dominating set in $G$ is the (connected) distance $k$-domination number of $G$, denoted by $\gamma_k(G)$ ($\gamma_k^c(G)$, respectively). The set $D$ is defined to be a total $k$-dominating set of $G$ if every vertex in $V$ is within distance $k$ from some vertex of $D$ other than itself. The minimum cardinality among all total $k$-dominating sets of $G$ is called the total $k$-domination number of $G$ and is denoted by $\gamma_k^t(G)$. For $x\in X\subseteq V$, if $N^k[x]-N^k[X-x]\neq\emptyset$, the vertex $x$ is said to be $k$-irredundant in $X$. A set $X$ containing only $k$-irredundant vertices is called $k$-irredundant. The $k$-irredundance number of $G$, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal $k$-irredundant sets of vertices of $G$. In this paper we establish lower bounds for the distance $k$-irredundance number of graphs and trees. More precisely, we prove that ${5k+1\over 2}ir_k(G)\geq \gamma_k^c(G)+2k$ for each connected graph $G$ and $(2k+1)ir_k(T)\geq\gamma_k^c(T)+2k\geq |V|+2k-kn_1(T)$ for each tree $T=(V,E)$ with $n_1(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann and Cyman, Lemańska and Raczek regarding $\gamma_k$ and the first generalizes a result of Favaron and Kratsch regarding $ir_1$. Furthermore, we shall show that $\gamma_k^c(G)\leq{3k+1\over2}\gamma_k^t(G)-2k$ for each connected graph $G$, thereby generalizing a result of Favaron and Kratsch regarding $k=1$.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050025
Author(s):  
Manal N. Al-Harere ◽  
Mohammed A. Abdlhusein

In this paper, a new model of domination in graphs called the pitchfork domination is introduced. Let [Formula: see text] be a finite, simple and undirected graph without isolated vertices, a subset [Formula: see text] of [Formula: see text] is a pitchfork dominating set if every vertex [Formula: see text] dominates at least [Formula: see text] and at most [Formula: see text] vertices of [Formula: see text], where [Formula: see text] and [Formula: see text] are non-negative integers. The domination number of [Formula: see text], denotes [Formula: see text] is a minimum cardinality over all pitchfork dominating sets in [Formula: see text]. In this work, pitchfork domination when [Formula: see text] and [Formula: see text] is studied. Some bounds on [Formula: see text] related to the order, size, minimum degree, maximum degree of a graph and some properties are given. Pitchfork domination is determined for some known and new modified graphs. Finally, a question has been answered and discussed that; does every finite, simple and undirected graph [Formula: see text] without isolated vertices have a pitchfork domination or not?


Author(s):  
Reynaldo V. Mollejon ◽  
Sergio R. Canoy

Let [Formula: see text] be a connected graph of order [Formula: see text]. A subset [Formula: see text] is a double hop dominating set (or a double [Formula: see text]-step dominating set) if [Formula: see text], where [Formula: see text], for each [Formula: see text]. The smallest cardinality of a double hop dominating set of [Formula: see text], denoted by [Formula: see text], is the double hop domination number of [Formula: see text]. In this paper, we investigate the concept of double hop dominating sets and study it for graphs resulting from some binary operations.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050052 ◽  
Author(s):  
Lidan Pei ◽  
Xiangfeng Pan

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple connected graph. The eccentric distance sum of [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the maximum distance from [Formula: see text] to any other vertex and [Formula: see text] is the sum of all distances from [Formula: see text]. A set [Formula: see text] is a distance [Formula: see text]-dominating set of [Formula: see text] if for every vertex [Formula: see text], [Formula: see text] for some vertex [Formula: see text]. The minimum cardinality among all distance [Formula: see text]-dominating sets of [Formula: see text] is called the distance [Formula: see text]-domination number [Formula: see text] of [Formula: see text]. In this paper, the trees among all [Formula: see text]-vertex trees with distance [Formula: see text]-domination number [Formula: see text] having the minimal eccentric distance sum are determined.


Sign in / Sign up

Export Citation Format

Share Document