scholarly journals Multitemporal analysis of vegetation indices for the superior region of the Moxotó River hydrographic basin

2018 ◽  
Vol 7 (5) ◽  
pp. 272
Author(s):  
Ulisses Alencar Bezerra ◽  
Leidjane Maria Maciel De Oliveira ◽  
Antônio Celso De Sousa Leite ◽  
Débora Natália Oliveira de Almeida ◽  
Ana Lúcia Bezerra Candeias ◽  
...  

The semi-arid region of Northeastern part of Brazil is under changes pressures driven by human activities or climate changes. This study aims to assess the vegetation coverage in two periods, before the transposition of the São Francisco River-East axis, and after your implementation, in the Moxotó River basin using remote sensing techniques to determine vegetation indices, and investigate the behavior of vegetation in the catchment area. The Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI). TM-Landsat5 image of 13/01/2009, and OLI-Landsat8 image of 04/02/2017 are used here. Radiometric calibration steps, reflectance are developed to generate thematic maps of NDVI and SAVI. The NDVI showed average values for 2009 and 2017 like 0,256 and 0,264, respectively, setting a growth of vegetation cover and photosynthetic activity. The SAVI had an average of 0,147 and 0,155 to years of 2009 and 2017, respectively. Differences were found between vegetable toppings determined by NDVI and by SAVI. The exposed soil class had greater expression when observed in the thematic maps of NDVI, once the SAVI, has the precept to reduce the brightness of the ground, and this index had a higher representation in the sparse vegetation.

2020 ◽  
Vol 12 (12) ◽  
pp. 1975
Author(s):  
Alexandru Hegyi ◽  
Apostolos Sarris ◽  
Florin Curta ◽  
Cristian Floca ◽  
Sorin Forțiu ◽  
...  

This study presents a new way to reconstruct the extent of medieval archaeological sites by using approaches from the field of geoinformatics. Hence, we propose a combined use of non-invasive methodologies which are used for the first time to study a medieval village in Romania. The focus here will be on ground-based and satellite remote-sensing techniques. The method relies on computing vegetation indices (proxies), which have been utilized for archaeological site detection in order to detect the layout of a deserted medieval town located in southwestern Romania. The data were produced by a group of small satellites (3U CubeSats) dispatched by Planet Labs which delivered high-resolution images of the Earth’s surface. The globe is encompassed by more than 150 satellites (dimensions: 10 × 10 × 30 cm) which catch different images for the same area at moderately short intervals at a spatial resolution of 3–4 m. The four-band Planet Scope satellite images were employed to calculate a number of vegetation indices such as NDVI (Normalized Difference Vegetation Index), DVI (Difference Vegetation Index), SR (Simple Vegetation Ratio) and others. For better precision, structure from motion (SfM) techniques were applied to generate a high-resolution orthomosaic and a digital surface model in which the boundaries of the medieval village of “Șanțul Turcilor” in Mașloc, Romania, can be plainly observed. Additionally, this study contrasts the outcomes with a geophysical survey that was attempted inside the central part of the medieval settlement. The technical results of this study also provide strong evidence from an historical point of view: the first documented case of village systematization during the medieval period within Eastern Europe (particularly Romania) found through geoscientific methods.


2020 ◽  
Vol 12 (15) ◽  
pp. 2433 ◽  
Author(s):  
Iman Rousta ◽  
Haraldur Olafsson ◽  
Md Moniruzzaman ◽  
Hao Zhang ◽  
Yuei-An Liou ◽  
...  

Drought has severe impacts on human society and ecosystems. In this study, we used data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM) sensors to examine the drought effects on vegetation in Afghanistan from 2001 to 2018. The MODIS data included the 16-day 250-m composites of the Normalized Difference Vegetation Index (NDVI) and the Vegetation Condition Index (VCI) with Land Surface Temperature (LST) images with 1 km resolution. The TRMM data were monthly rainfalls with 0.1-degree resolution. The relationship between drought and index-defined vegetation variation was examined by using time series, regression analysis, and anomaly calculation. The results showed that the vegetation coverage for the whole country, reaching the lowest levels of 6.2% and 5.5% were observed in drought years 2001 and 2008, respectively. However, there is a huge inter-regional variation in vegetation coverage in the study period with a significant rising trend in Helmand Watershed with R = 0.66 (p value = 0.05). Based on VCI for the same two years (2001 and 2008), 84% and 72% of the country were subject to drought conditions, respectively. Coherently, TRMM data confirm that 2001 and 2008 were the least rainfall years of 108 and 251 mm, respectively. On the other hand, years 2009 and 2010 were registered with the largest vegetation coverage of 16.3% mainly due to lower annual LST than average LST of 14 degrees and partially due to their slightly higher annual rainfalls of 378 and 425 mm, respectively, than the historical average of 327 mm. Based on the derived VCI, 28% and 21% of the study area experienced drought conditions in 2009 and 2010, respectively. It is also found that correlations are relatively high between NDVI and VCI (r = 0.77, p = 0.0002), but slightly lower between NDVI and precipitation (r = 0.51, p = 0.03). In addition, LST played a key role in influencing the value of NDVI. However, both LST and precipitation must be considered together in order to properly capture the correlation between drought and NDVI.


2015 ◽  
Vol 12 (13) ◽  
pp. 4149-4159 ◽  
Author(s):  
J. A. Gamon ◽  
O. Kovalchuck ◽  
C. Y. S. Wong ◽  
A. Harris ◽  
S. R. Garrity

Abstract. The vegetation indices normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI) provide indicators of pigmentation and photosynthetic activity that can be used to model photosynthesis from remote sensing with the light-use-efficiency model. To help develop and validate this approach, reliable proximal NDVI and PRI sensors have been needed. We tested new NDVI and PRI sensors, "spectral reflectance sensors" (SRS sensors; recently developed by Decagon Devices, during spring activation of photosynthetic activity in evergreen and deciduous stands. We also evaluated two methods of sensor cross-calibration – one that considered sky conditions (cloud cover) at midday only, and another that also considered diurnal sun angle effects. Cross-calibration clearly affected sensor agreement with independent measurements, with the best method dependent upon the study aim and time frame (seasonal vs. diurnal). The seasonal patterns of NDVI and PRI differed for evergreen and deciduous species, demonstrating the complementary nature of these two indices. Over the spring season, PRI was most strongly influenced by changing chlorophyll : carotenoid pool sizes, while over the diurnal timescale, PRI was most affected by the xanthophyll cycle epoxidation state. This finding demonstrates that the SRS PRI sensors can resolve different processes affecting PRI over different timescales. The advent of small, inexpensive, automated PRI and NDVI sensors offers new ways to explore environmental and physiological constraints on photosynthesis, and may be particularly well suited for use at flux tower sites. Wider application of automated sensors could lead to improved integration of flux and remote sensing approaches for studying photosynthetic carbon uptake, and could help define the concept of contrasting vegetation optical types.


Author(s):  
M. Piragnolo ◽  
G. Lusiani ◽  
F. Pirotti

Permanent pastures (PP) are defined as grasslands, which are not subjected to any tillage, but only to natural growth. They are important for local economies in the production of fodder and pastures (Ali et al. 2016). Under these definitions, a pasture is permanent when it is not under any crop-rotation, and its production is related to only irrigation, fertilization and mowing. Subsidy payments to landowners require monitoring activities to determine which sites can be considered PP. These activities are mainly done with visual field surveys by experienced personnel or lately also using remote sensing techniques. The regional agency for SPS subsidies, the Agenzia Veneta per i Pagamenti in Agricoltura (AVEPA) takes care of monitoring and control on behalf of the Veneto Region using remote sensing techniques. The investigation integrate temporal series of Sentinel-2 imagery with RPAS. Indeed, the testing area is specific region were the agricultural land is intensively cultivated for production of hay harvesting four times every year between May and October. The study goal of this study is to monitor vegetation presence and amount using the Normalized Difference Vegetation Index (NDVI), the Soil-adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Built Index (NDBI). The overall objective is to define for each index a set of thresholds to define if a pasture can be classified as PP or not and recognize the mowing.


Author(s):  
Thallita R. S. Mendes ◽  
Eder P. Miguel ◽  
Pedro G. A. Vasconcelos ◽  
Marco B. X. Valadão ◽  
Alba V. Rezende ◽  
...  

Assessing forest stands is crucial for managing and planning the use of these resources. Forest inventory is the instrument that provides information about the stand situation, which can be costly and time consuming. In order to facilitate and reduce the time spent obtaining these data, the main objective of this work was to evaluate the accuracy of volume and biomass estimates per unit area with data from remote sensing. Forty sample units were allocated and georeferenced, in which all trees with diameter at breast height (DBH) ≥ 5 cm were inventoried. Sequentially, the cubage was performed in order to obtain individual biomass, volume, and adjustment of the individual models. With data from georeferenced images of the study area, the vegetation indices MSAVI (Modified Soil-Adjusted Vegetation Index) and NDVI (Normalized Difference Vegetation Index) were obtained. The volume and biomass estimation using remote sensing variables were carried out through the adjustment of sigmoidal models by regression analysis, which used a combination of the average values of the vegetation indices and the basal area of the plot/hectares as an independent variable. The fit statistics and the accuracy of the tested models presented consistent results to estimate forest production. The results showwd that indices derived from remote sensing techniques associated with forest variables information could accurately estimate the volume and biomass of Eucalyptus spp. plantations.


2019 ◽  
Vol 9 (24) ◽  
pp. 5314 ◽  
Author(s):  
Marica Franzini ◽  
Giulia Ronchetti ◽  
Giovanna Sona ◽  
Vittorio Casella

This paper is about the geometric and radiometric consistency of diverse and overlapping datasets acquired with the Parrot Sequoia camera. The multispectral imagery datasets were acquired above agricultural fields in Northern Italy and radiometric calibration images were taken before each flight. Processing was performed with the Pix4Dmapper suite following a single-block approach: images acquired in different flight missions were processed in as many projects, where different block orientation strategies were adopted and compared. Results were assessed in terms of geometric and radiometric consistency in the overlapping areas. The geometric consistency was evaluated in terms of point cloud distance using iterative closest point (ICP), while the radiometric consistency was analyzed by computing the differences between the reflectance maps and vegetation indices produced according to adopted processing strategies. For normalized difference vegetation index (NDVI), a comparison with Sentinel-2 was also made. This paper will present results obtained for two (out of several) overlapped blocks. The geometric consistency is good (root mean square error (RMSE) in the order of 0.1 m), except for when direct georeferencing is considered. Radiometric consistency instead presents larger problems, especially in some bands and in vegetation indices that have differences above 20%. The comparison with Sentinel-2 products shows a general overestimation of Sequoia data but with similar spatial variations (Pearson’s correlation coefficient of about 0.7, p-value < 2.2 × 10−16).


2015 ◽  
Vol 12 (3) ◽  
pp. 2947-2978 ◽  
Author(s):  
J. A. Gamon ◽  
O. Kovalchuk ◽  
C. Y. S. Wong ◽  
A. Harris ◽  
S. R. Garrity

Abstract. The vegetation indices normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI) provide indicators of pigmentation and photosynthetic activity that can be used to model photosynthesis from remote sensing with the light-use efficiency model. To help develop and validate this approach, reliable proximal NDVI and PRI sensors have been needed. We tested new NDVI and PRI sensors, "SRS" sensors recently developed by Decagon Devices, during spring activation of photosynthetic activity in evergreen and deciduous stands. We also evaluated two methods of sensor cross-calibration, one that considered sky conditions (cloud cover) at midday only, and the other that also considered diurnal sun angle effects. Cross-calibration clearly affected sensor agreement with independent measurements, with the best method dependent upon the study aim and time frame (seasonal vs. diurnal). The seasonal patterns of NDVI and PRI differed for evergreen and deciduous species, demonstrating the complementary nature of these two indices. Over the spring season, PRI was most strongly influenced by changing chlorophyll : carotenoid pool sizes, while over the diurnal time scale PRI was most affected by the xanthophyll cycle epoxidation state. This finding demonstrates that the SRS PRI sensors can resolve different processes affecting PRI over different time scales. The advent of small, inexpensive, automated PRI and NDVI sensors offers new ways to explore environmental and physiological constraints on photosynthesis, and may be particularly well-suited for use at flux tower sites. Wider application of automated sensors could lead to improved integration of flux and remote sensing approaches to studying photosynthetic carbon uptake, and could help define the concept of contrasting vegetation optical types.


2019 ◽  
Vol 2 (1) ◽  
pp. 11-14
Author(s):  
Wahyu Adi

Pulau Kecil Gelasa merupakan daerah yang belum banyak diteliti. Pemetaan ekosistem di pulau kecil dilakukan dengan bantuan citra Advanced Land Observing Satellite (ALOS). Penelitian terdahulu diketahui bahwa ALOS memiliki kemampuan memetakan terumbu karang dan padang lamun di perairan dangkal serta mampu memetakan kerapatan penutupan vegetasi. Metode interpretasi citra menggunakan alogaritma indeks vegetasi pada citra ALOS yaitu NDVI (Normalized Difference Vegetation Index), serta pendekatan Lyzengga untuk mengkoreksi kolom perairan. Hasil penelitian didapatkan luasan Padang Lamun di perairan dangkal 41,99 Ha, luasan Terumbu Karang 125,57 Ha. Hasil NDVI di daratan/ pulau kecil Gelasa untuk Vegetasi Rapat seluas 47,62 Ha; luasan penutupan Vegetasi Sedang 105,86 Ha; dan penutupan Vegetasi Jarang adalah 34,24 Ha.   Small Island Gelasa rarely studied. Mapping ecosystems on small islands with the image of Advanced Land Observing Satellite (ALOS). Previous research has found that ALOS has the ability to map coral reefs and seagrass beds in shallow water, and is able to map vegetation cover density. The method of image interpretation uses the vegetation index algorithm in the ALOS image, NDVI (Normalized Difference Vegetation Index), and the Lyzengga approach to correct the water column. The results of the study were obtained in the area of Seagrass Padang in the shallow waters of 41.99 ha, the area of coral reefs was 125.57 ha. NDVI results on land / small islands Gelasa for dense vegetation of 47.62 ha; area of Medium Vegetation coverage 105.86 Ha; and the coverage of Rare Vegetation is 34.24 Ha.


2020 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Faradina Marzukhi ◽  
Nur Nadhirah Rusyda Rosnan ◽  
Md Azlin Md Said

The aim of this study is to analyse the relationship between vegetation indices of Normalized Difference Vegetation Index (NDVI) and soil nutrient of oil palm plantation at Felcra Nasaruddin Bota in Perak for future sustainable environment. The satellite image was used and processed in the research. By Using NDVI, the vegetation index was obtained which varies from -1 to +1. Then, the soil sample and soil moisture analysis were carried in order to identify the nutrient values of Nitrogen (N), Phosphorus (P) and Potassium (K). A total of seven soil samples were acquired within the oil palm plantation area. A regression model was then made between physical condition of the oil palms and soil nutrients for determining the strength of the relationship. It is hoped that the risk map of oil palm healthiness can be produced for various applications which are related to agricultural plantation.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


Sign in / Sign up

Export Citation Format

Share Document