Rational interpolation of the function |x|α by an extended system of Chebyshev – Markov nodes
In this paper, we study the approximations of a function |x|α, α > 0 by interpolation rational Lagrange functions on a segment [–1,1]. The zeros of the even Chebyshev – Markov rational functions and a point x = 0 are chosen as the interpolation nodes. An integral representation of an interpolation remainder and an upper bound for the considered uniform approximations are obtained. Based on them, a detailed study is made:a) the polynomial case. Here, the authors come to the famous asymptotic equality of M. N. Hanzburg;b) at a fixed number of geometrically different poles, the upper estimate is obtained for the corresponding uniform approximations, which improves the well-known result of K. N. Lungu;c) when approximating by general Lagrange rational interpolation functions, the estimate of uniform approximations is found and it is shown that at the ends of the segment [–1,1] it can be improved.The results can be applied in theoretical research and numerical methods.