scholarly journals Multi-Body Dynamics Simulation Analysis of Crankshaft Assembly in V-Type 12-Cylinder Large Diesel Based on Adams

Author(s):  
Chen Ni ◽  
Lin Hua ◽  
Zhi-Kui Ma ◽  
Meng-Lei Sun
2013 ◽  
Vol 339 ◽  
pp. 425-429 ◽  
Author(s):  
Song Wang ◽  
Da Wei Liu ◽  
Wei Liu

In this paper, a detailed rigid-flexible coupling multi-body dynamic model of heavy vehicle was established using multi-body dynamics method, and B class road model was built using harmonic superposition method. Then, the platform of heavy vehicle dynamics simulation was established. The driver seat acceleration and tire dynamic load were simulated at different speeds under the input of different random road excitations. According to the ride comfort evaluation method provided by ISO2631-1, total weighted root-mean-square (RMS) acceleration evaluation method was used to evaluate the ride comfort of heavy vehicle at different ride speeds.


2011 ◽  
Vol 97-98 ◽  
pp. 706-711 ◽  
Author(s):  
Kang Shao ◽  
Chang Wen Liu ◽  
Fong Rong Bi ◽  
Xian Feng Du ◽  
Xia Wang ◽  
...  

Taking example of a four-cylinder inline diesel engine that used in vehicle, this paper makes an assembly engine of three-dimensional that based on virtual prototype technology. While using the flexible-body dynamics simulation, the main bearing load that effect engine’s vibration will be gained. And the key point vibration response will be gained when the support part constrained. The experimental results coincide with the simulation results shows the correction of the simulation analysis. The initial stage of the vibration can be predicted by using the method of multi-body system analysis, and this guide the designer to identify the engine vibration.


2012 ◽  
Vol 426 ◽  
pp. 213-217
Author(s):  
De Gong Chang ◽  
R. Zong ◽  
Cong Feng An

Based on multi-body dynamics theory, this paper uses ADAMS to carry on the dynamic simulation for assembly model of roller gear indexing cam mechanism in the case of frictionless and consideration of friction gap, detailed analysis of the gap generated by friction has influence on contact transmission of cam mechanism, and obtained the movement rule curves of angular velocity and angular acceleration and some valuable conclusions. It provided theoretical basis and reference for the subsequent design and research of roller gear indexing cam mechanism.


2014 ◽  
Vol 988 ◽  
pp. 617-620
Author(s):  
Ran Ran Wang ◽  
Yan Ming Xu ◽  
Xian Bin Teng

Based on the V-type diesel engine crankshaft system, the paper combined the finite element method (fem) and multi-body dynamics method together, made a virtual simulation analysis. First, by 3d software and finite element software to establish the multi-body dynamic models of the crankshaft, bearing and piston, then simulated the actual engine working condition, and got the data such as crankshaft acceleration, velocity and displacement by the multi-body dynamics simulation analysis. By calculation, the paper found that by using the combination of finite element and multi-body simulation method, can we effectively simulate the diesel engine crankshaft dynamics characteristics.


2014 ◽  
Vol 950 ◽  
pp. 275-280
Author(s):  
Meng Cai ◽  
Liang Gu

TIn this paper, according to the structure characteristics and using characteristics of heavy duty truck, we use the principle of vehicle dynamics and simulation analysis method to deeply study the dynamic characteristics of heavy duty truck. And we also use the heavy duty model to carry on the optimization simulation and experimental validation for riding smoothness and handling stability. So as to guide the development and design of heavy duty truck, to get the purpose of control the dynamic performance and shorten the development cycle.


2012 ◽  
Vol 472-475 ◽  
pp. 1971-1976 ◽  
Author(s):  
Wei Dong Huang ◽  
Hong Kui Feng ◽  
Jin Song Bao ◽  
You Sheng Xu

Motor drive control is the major study field in the development of lunar rover. Based on the double-closed DC loop adjustable-speed system, a motor drive simulation module using a position recursive PID control algorithm is developed, which is integrated into the multi-body dynamics simulation system, to carry out the whole lunar rover simulation. And the cruise process of lunar rover locomotion in the complex lunar terrain is simulated in a virtual environment.


Sign in / Sign up

Export Citation Format

Share Document