scholarly journals Cross-Racial Automatic Age Estimation from Facial Images using Deep Learning

This paper presents a deep learning approach for age estimation of human beings using their facial images. The different racial groups based on skin colour have been incorporated in the annotations of the images in the dataset, while ensuring an adequate distribution of subjects across the racial groups so as to achieve an accurate Automatic Facial Age Estimation (AFAE). The principle of transfer learning is applied to the ResNet50 Convolutional Neural Network (CNN) initially pretrained for the task of object classification and finetuning it’s hyperparameters to propose an AFAE system that can be used to automate ages of humans across multiple racial groups. The mean absolute error of 4.25 years is obtained at the end of the research which proved the effectiveness and superiority of the proposed method.

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2424 ◽  
Author(s):  
Md Atiqur Rahman Ahad ◽  
Thanh Trung Ngo ◽  
Anindya Das Antar ◽  
Masud Ahmed ◽  
Tahera Hossain ◽  
...  

Wearable sensor-based systems and devices have been expanded in different application domains, especially in the healthcare arena. Automatic age and gender estimation has several important applications. Gait has been demonstrated as a profound motion cue for various applications. A gait-based age and gender estimation challenge was launched in the 12th IAPR International Conference on Biometrics (ICB), 2019. In this competition, 18 teams initially registered from 14 countries. The goal of this challenge was to find some smart approaches to deal with age and gender estimation from sensor-based gait data. For this purpose, we employed a large wearable sensor-based gait dataset, which has 745 subjects (357 females and 388 males), from 2 to 78 years old in the training dataset; and 58 subjects (19 females and 39 males) in the test dataset. It has several walking patterns. The gait data sequences were collected from three IMUZ sensors, which were placed on waist-belt or at the top of a backpack. There were 67 solutions from ten teams—for age and gender estimation. This paper extensively analyzes the methods and achieved-results from various approaches. Based on analysis, we found that deep learning-based solutions lead the competitions compared with conventional handcrafted methods. We found that the best result achieved 24.23% prediction error for gender estimation, and 5.39 mean absolute error for age estimation by employing angle embedded gait dynamic image and temporal convolution network.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaori Ishii ◽  
Ryo Asaoka ◽  
Takashi Omoto ◽  
Shingo Mitaki ◽  
Yuri Fujino ◽  
...  

AbstractThe purpose of the current study was to predict intraocular pressure (IOP) using color fundus photography with a deep learning (DL) model, or, systemic variables with a multivariate linear regression model (MLM), along with least absolute shrinkage and selection operator regression (LASSO), support vector machine (SVM), and Random Forest: (RF). Training dataset included 3883 examinations from 3883 eyes of 1945 subjects and testing dataset 289 examinations from 289 eyes from 146 subjects. With the training dataset, MLM was constructed to predict IOP using 35 systemic variables and 25 blood measurements. A DL model was developed to predict IOP from color fundus photographs. The prediction accuracy of each model was evaluated through the absolute error and the marginal R-squared (mR2), using the testing dataset. The mean absolute error with MLM was 2.29 mmHg, which was significantly smaller than that with DL (2.70 dB). The mR2 with MLM was 0.15, whereas that with DL was 0.0066. The mean absolute error (between 2.24 and 2.30 mmHg) and mR2 (between 0.11 and 0.15) with LASSO, SVM and RF were similar to or poorer than MLM. A DL model to predict IOP using color fundus photography proved far less accurate than MLM using systemic variables.


2020 ◽  
Vol 12 (22) ◽  
pp. 3833
Author(s):  
Chao Ji ◽  
Hong Tang

Stereo photogrammetric survey used to be used to extract the height of buildings, then to convert the height to number of stories through certain rules to estimate the number of stories of buildings by means of satellite remote sensing. In contrast, we propose a new method using deep learning to estimate the number of stories of buildings from monocular optical satellite image end to end in this paper. To the best of our knowledge, this is the first attempt to directly estimate the number of stories of buildings from monocular satellite images. Specifically, in the proposed method, we extend a classic object detection network, i.e., Mask R-CNN, by adding a new head to predict the number of stories of detected buildings from satellite images. GF-2 images from nine cities in China are used to validate the effectiveness of the proposed methods. The result of experiment show that the mean absolute error of prediction on buildings whose stories between 1–7, 8–20, and above 20 are 1.329, 3.546, and 8.317, respectively, which indicate that our method has possible application potentials in low-rise buildings, but the accuracy in middle-rise and high-rise buildings needs to be further improved.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3719
Author(s):  
Aoxin Ni ◽  
Arian Azarang ◽  
Nasser Kehtarnavaz

The interest in contactless or remote heart rate measurement has been steadily growing in healthcare and sports applications. Contactless methods involve the utilization of a video camera and image processing algorithms. Recently, deep learning methods have been used to improve the performance of conventional contactless methods for heart rate measurement. After providing a review of the related literature, a comparison of the deep learning methods whose codes are publicly available is conducted in this paper. The public domain UBFC dataset is used to compare the performance of these deep learning methods for heart rate measurement. The results obtained show that the deep learning method PhysNet generates the best heart rate measurement outcome among these methods, with a mean absolute error value of 2.57 beats per minute and a mean square error value of 7.56 beats per minute.


Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 68
Author(s):  
Jiwei Fan ◽  
Xiaogang Yang ◽  
Ruitao Lu ◽  
Xueli Xie ◽  
Weipeng Li

Unmanned aerial vehicles (UAV) and related technologies have played an active role in the prevention and control of novel coronaviruses at home and abroad, especially in epidemic prevention, surveillance, and elimination. However, the existing UAVs have a single function, limited processing capacity, and poor interaction. To overcome these shortcomings, we designed an intelligent anti-epidemic patrol detection and warning flight system, which integrates UAV autonomous navigation, deep learning, intelligent voice, and other technologies. Based on the convolution neural network and deep learning technology, the system possesses a crowd density detection method and a face mask detection method, which can detect the position of dense crowds. Intelligent voice alarm technology was used to achieve an intelligent alarm system for abnormal situations, such as crowd-gathering areas and people without masks, and to carry out intelligent dissemination of epidemic prevention policies, which provides a powerful technical means for epidemic prevention and delaying their spread. To verify the superiority and feasibility of the system, high-precision online analysis was carried out for the crowd in the inspection area, and pedestrians’ faces were detected on the ground to identify whether they were wearing a mask. The experimental results show that the mean absolute error (MAE) of the crowd density detection was less than 8.4, and the mean average precision (mAP) of face mask detection was 61.42%. The system can provide convenient and accurate evaluation information for decision-makers and meets the requirements of real-time and accurate detection.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


2021 ◽  
pp. 875697282199994
Author(s):  
Joseph F. Hair ◽  
Marko Sarstedt

Most project management research focuses almost exclusively on explanatory analyses. Evaluation of the explanatory power of statistical models is generally based on F-type statistics and the R 2 metric, followed by an assessment of the model parameters (e.g., beta coefficients) in terms of their significance, size, and direction. However, these measures are not indicative of a model’s predictive power, which is central for deriving managerial recommendations. We recommend that project management researchers routinely use additional metrics, such as the mean absolute error or the root mean square error, to accurately quantify their statistical models’ predictive power.


2011 ◽  
Vol 18 (01) ◽  
pp. 71-85
Author(s):  
Fabrizio Cacciafesta

We provide a simple way to visualize the variance and the mean absolute error of a random variable with finite mean. Some application to options theory and to second order stochastic dominance is given: we show, among other, that the "call-put parity" may be seen as a Taylor formula.


2013 ◽  
Vol 30 (8) ◽  
pp. 1757-1765 ◽  
Author(s):  
Sayed-Hossein Sadeghi ◽  
Troy R. Peters ◽  
Douglas R. Cobos ◽  
Henry W. Loescher ◽  
Colin S. Campbell

Abstract A simple analytical method was developed for directly calculating the thermodynamic wet-bulb temperature from air temperature and the vapor pressure (or relative humidity) at elevations up to 4500 m above MSL was developed. This methodology was based on the fact that the wet-bulb temperature can be closely approximated by a second-order polynomial in both the positive and negative ranges in ambient air temperature. The method in this study builds upon this understanding and provides results for the negative range of air temperatures (−17° to 0°C), so that the maximum observed error in this area is equal to or smaller than −0.17°C. For temperatures ≥0°C, wet-bulb temperature accuracy was ±0.65°C, and larger errors corresponded to very high temperatures (Ta ≥ 39°C) and/or very high or low relative humidities (5% < RH < 10% or RH > 98%). The mean absolute error and the root-mean-square error were 0.15° and 0.2°C, respectively.


2020 ◽  
Vol 10 (1) ◽  
pp. 74-86
Author(s):  
Saddam Bekhet ◽  
Hussein Alahmer

Sign in / Sign up

Export Citation Format

Share Document