OPTIMIZATION OF THE TECHNOLOGICAL EFFICIENCY OF CO2 INJECTION IN EXTRA-VISCOUS OIL DEPOSITS USING LABORATORY STUDIES AND NUMERICAL MODELING

Author(s):  
A.V. Nekrasov ◽  
◽  
K.I. Maksakov ◽  
G.A. Usachev ◽  
V.B. Karpov ◽  
...  
Author(s):  
V.G. Toporkov ◽  
◽  
S.Yu. Rudakovskaya ◽  
N.R. Krivova ◽  
S.V. Kolesnik ◽  
...  
Keyword(s):  

2001 ◽  
Author(s):  
Y. H. Zheng ◽  
R. S. Amano

Abstract An efficient enhancement of the carbonation rate in the bottle filling stage can substantially increase the production in beverage industries. The bottle filling system currently used in most of the manufacturers can still be improved for a better performance of carbonation by designing the injection tube system. This paper reports on an experimental and numerical mass transfer modeling that can simulate the dissolution process of gaseous carbon dioxide into aqueous water in the bottle filler system. In order to establish the operating characteristics of the bottle filler system, an ordinary tap water and pure carbon dioxide were used as the liquid-gas system. The two-phase numerical modeling was developed that can serve as a framework for the continuous improvement of the design of the carbonation process in the bottle filler system. For an optimal design of CO2 injection tube and flow conditions, a computational fluid dynamics (CFD) approach is one of the most power tools. However, since only limited experimental data are available in the open literature to verify the computational results, an experiment study was performed to obtain measurements of CO2 level, temperature, and pressure during the carbonation process in the bottle filled with liquid. Both experimental and numerical studies of various flow condition and different sizes of injection tube are presented in this paper.


2021 ◽  
pp. 86-98
Author(s):  
V. Yu. Ogoreltsev ◽  
S. A. Leontiev ◽  
A. S. Drozdov

When developing hard-to-recover reserves of oil fields, methods of enhanced oil recovery, used from chemical ones, are massively used. To establish the actual oil-washing characteristics of surfactant grades accepted for testing in the pore space of oil-containing reservoir rocks, a set of laboratory studies was carried out, including the study of molecular-surface properties upon contact of oil from the BS10 formation of the West Surgutskoye field and model water types with the addition of surfactants of various concentrations, as well as filtration tests of surfactant technology compositions on core models of the VK1 reservoir of the Rogozhnikovskoye oil field. On the basis of the performed laboratory studies of rocks, it has been established that conducting pilot operations with the use of Neonol RHP-20 will lead to higher technological efficiency than from the currently used at the company's fields in the compositions of the technologies of physical and chemical EOR Neonol BS-1 and proposed for application of Neftenol VKS, Aldinol-50 and Betanol.


Sign in / Sign up

Export Citation Format

Share Document