AbstractThe thermal gravimetric analysis (TG) is a common method for the examination of the carbonation progress of cement-based materials. Unfortunately, the thermal properties of some components complicate the evaluation of TG results. Various hydrate phases, such as ettringite (AFt), C–S–H and AFm, decompose almost simultaneously in the temperature range up to 200 °C. Additionally, physically bound water is released in the same temperature range. In the temperature range between 450 °C and 600 °C, the decomposition of calcium hydroxide and amorphous or weakly bound carbonates takes place simultaneously. Carbonates, like calcite, from limestone powder or other additives may be already contained in the noncarbonated sample material. For this research, an attempt was made to minimise the influence of these effects. Therefore, differential curves from DTG results of noncarbonated areas and areas with various states of carbonation of the same sample material were calculated and evaluated. Concretes based on three different types of cement were produced and stored under accelerated carbonation conditions (1% CO2 in air). The required sample material was obtained by cutting slices from various depths of previously CO2-treated specimen and subsequent grinding. During the sample preparation, a special attention was paid that no additional carbonation processes took place. As reference method for the determination of the carbonation depth, the sprayed application of phenolphthalein solution was carried out. Microscopic analysis was examined to confirm the assumptions made previously. Furthermore, the observed effect of encapsulation of calcium hydroxide by carbonates caused by the accelerated carbonation conditions was examined more closely.