scholarly journals Refractive index sensor based on a solid-core photonic crystal fiber interferometer

2019 ◽  
Vol 15 (34) ◽  
pp. 99-105
Author(s):  
Nawras Ali Salman

Photonic crystal fiber interferometers are widely used for sensing applications. In this work, solid core-Photonic crystal fiber based on Mach-Zehnder modal interferometer for sensing refractive index was presented. The general structure of sensor applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28). To apply modal interferometer theory; collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). Laser diode (1550 nm) has been used as a pump light source. Where a high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted. The experimental work shows that the interference spectrum of Photonic crystal fiber interferometer exhibits good sensitivity to refractive index variations. The response of the PCFI is observed for a range of refractive index values from (1.33 to 1.38), the position of the interference peaks is found to be shifted to longer wavelength with refractive index increasing. A different length of PCFs (2, 3, 4) cm were used, and the maximum refractive index sensitivity of (7.5 pm / RIU) is achieved with a PCF length of 4 cm. This refractive index sensor has distinguished properties as that it small size, high sensitivity, fast response time, design flexibility, and immunity to electromagnetic interference.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3782
Author(s):  
Xin Yan ◽  
Rao Fu ◽  
Tonglei Cheng ◽  
Shuguang Li

This paper proposes a highly sensitive surface plasmon resonance (SPR) refractive index sensor based on the photonic crystal fiber (PCF). The optical properties of the PCF are investigated by modulating the refractive index of a liquid analyte. The finite element method (FEM) is used to calculate and analyze the PCF structure. After optimization, the fiber can achieve high linearity of 0.9931 and an average refractive index sensitivity of up to 14,771.4 nm/RIU over a refractive index range from 1.47 to 1.52, with the maximum wavelength sensitivity of 18,000.5 nm/RIU. The proposed structure can be used in various sensing applications, including biological monitoring, environmental monitoring, and chemical production with the modification and analysis of the proposed structure.


2019 ◽  
Vol 13 (27) ◽  
pp. 127-143
Author(s):  
Rawaa K. Zarzoor

Photonic crystal fiber interferometers are used in many sensing applications. In this work, an in-reflection photonic crystal fiber (PCF) based on Mach-Zehnder (micro-holes collapsing) (MZ) interferometer, which exhibits high sensitivity to different volatile organic compounds (VOCs), without the needing of any permeable material. The interferometer is robust, compact, and consists of a stub photonic crystal fiber of large-mode area, photonic crystal fiber spliced to standard single mode fiber (SMF) (corning-28), this splicing occurs with optimized splice loss 0.19 dB In the splice regions the voids of the holey fiber are completely collapsed, which allows the excitation and recombination of core and cladding modes. The device reflection spectrum exhibits a sinusoidal interference pattern which shifts differently when the voids of the PCF are infiltrated with VOC molecules. The volume of voids responsible for the shift is less than 5microliters whereas the detectable levels are in the nanomole range. Laser diode with a wavelength 1550nm has been used as a pump light source. Two types of chemical liquids used (N-Hexane, and Propanol). The detection limits of our device associated with the maximum shifts of the wavelength is 4.4 nm for N-Hexane vapor when the length of the head sensor 20mm. In this work, the maximum sensitivity obtained of volatile organic compounds is 15420 nm/mol at the vapor of N-Hexane.


2013 ◽  
Vol 5 (6) ◽  
pp. 4801108-4801108 ◽  
Author(s):  
C. J. Hao ◽  
Y. Lu ◽  
M. T. Wang ◽  
B. Q Wu ◽  
L. C. Duan ◽  
...  

Optik ◽  
2021 ◽  
Vol 226 ◽  
pp. 165495
Author(s):  
Yongfeng Wu ◽  
Bo Liu ◽  
Jin Wang ◽  
Jing Wu ◽  
Yaya Mao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document