Influence of powerful electromagnetic pulses on the operation of typical integrated microcontrollers.
The effects arising in an integrated microchip (IC) of a microcontroller (MC) performing test logic operations under the action of powerful electrical impulses are investigated. The IC MC STM8S003 was chosen as a typical microcontroller. The exposure was carried out by electric pulses with an electric field strength of up to 20 kV/cm and a duration of 6 ns. It is shown that impulse influences can lead to logical failures when performing IC MC logical operations, the effectiveness of the influence depends not only on the parameters of the electromagnetic pulse, but also on the specific operation performed during which it occurred. The repetition rate of electromagnetic pulses up to 1 kHz does not significantly affect the type of failures of the IC MC. The supply voltage of the IC MC affects its stability; to create a failure, an increase in the amplitude of the electromagnetic pulse is required with an increase in the supply voltage. Passive components of a printed circuit board are more susceptible to electromagnetic influences than IC MC.