A method for computing the stress fields in a deformable elastic half-space with a polysynthetic twin near the surface

2012 ◽  
Vol 47 (3) ◽  
pp. 324-332
Author(s):  
O. M. Ostrikov
2015 ◽  
Vol 203 (2) ◽  
pp. 1193-1206 ◽  
Author(s):  
E. Pan ◽  
A. Molavi Tabrizi ◽  
A. Sangghaleh ◽  
W. A. Griffith

1996 ◽  
Vol 63 (4) ◽  
pp. 925-932 ◽  
Author(s):  
L. Z. Wu ◽  
S. Y. Du

The problem of a circular cylindrical inclusion with uniform eigenstrain in an elastic half-space is studied by using the Green’s function technique. Explicit solutions are obtained for the displacement and stress fields. It is shown that the present elastic fields can be expressed as functions of the complete elliptic integrals of the first, second, and third kind. Finally, numerical results are shown for the displacement and stress fields.


2012 ◽  
Vol 79 (2) ◽  
Author(s):  
H. J. Chu ◽  
E. Pan ◽  
J. Wang ◽  
I. J. Beyerlein

The elastic displacement and stress fields due to a polygonal dislocation within an anisotropic homogeneous half-space are studied in this paper. Simple line integrals from 0 to π for the elastic fields are derived by applying the point-force Green’s functions in the corresponding half-space. Notably, the geometry of the polygonal dislocation is included entirely in the integrand easing integration for any arbitrarily shaped dislocation. We apply the proposed method to a hexagonal shaped dislocation loop with Burgers vector along [1¯ 1 0] lying on the crystallographic (1 1 1) slip plane within a half-space of a copper crystal. It is demonstrated numerically that the displacement jump condition on the dislocation loop surface and the traction-free condition on the surface of the half-space are both satisfied. On the free surface of the half-space, it is shown that the distributions of the hydrostatic stress (σ11 + σ22)/2 and pseudohydrostatic displacement (u1 + u2)/2 are both anti-symmetric, while the biaxial stress (σ11 − σ22)/2 and pseudobiaxial displacement (u1 − u2)/2 are both symmetric.


2016 ◽  
pp. 3564-3575 ◽  
Author(s):  
Ara Sergey Avetisyan

The efficiency of virtual cross sections method and MELS (Magneto Elastic Layered Systems) hypotheses application is shown on model problem about distribution of wave field in thin surface layers of waveguide when plane wave signal is propagating in it. The impact of surface non-smoothness on characteristics of propagation of high-frequency horizontally polarized wave signal in isotropic elastic half-space is studied. It is shown that the non-smoothness leads to strong distortion of the wave signal over the waveguide thickness and along wave signal propagation direction as well.  Numerical comparative analysis of change in amplitude and phase characteristics of obtained wave fields against roughness of weakly inhomogeneous surface of homogeneous elastic half-space surface is done by classical method and by proposed approach for different kind of non-smoothness.


Sign in / Sign up

Export Citation Format

Share Document