elastic displacement
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 37)

H-INDEX

19
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2902
Author(s):  
Ahmed E. Abouelregal ◽  
Marin Marin ◽  
Sameh S. Askar

The current study investigates thermophotovoltaic interactions using a new mathematical model of thermoelasticity established on a modification of the Green–Naghdi model of type III (GN-III). The basic equations, in which the heat transfer is in the form of the Moore–Gibson–Thompson (MGT) equation, are derived by adding a single delay factor to the GN-III model. The impact of temperature and electrical elastic displacement of semiconductors throughout the excited thermoelectric mechanism can be studied theoretically using this model. The proposed model was used to investigate the interactions between the processes of thermoelastic plasma in a rotating semiconductor solid sphere that was subjected to a thermal shock and crossed to an externally applied magnetic field. The influence of rotation parameters on various photothermal characteristics of silicon solid was presented and explored using the Laplace technique.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qiji Sun ◽  
Kesen Yang ◽  
Guomin Xu ◽  
Shunde Yin ◽  
Chunsheng Wang

An artificial sandstone core model of large well group of positive rhythmic heterogeneous reservoir was designed and made for the simulation of ASP flooding experiment in the moderate heterogeneous reservoir. The well layout of one injection and one production was employed for the core model, to simulate the influence of polymer preslugs with different viscosity on ASP flooding effect. The experimental results show that the injectability of the polymer preslug and the effect of relieving the conflict of remaining oil production in each layer are related to the viscosity of the system. In the heterogeneous core model with the coefficient of variation of 0.65, under the constraint of the same amount of polymer agent, the ASP flooding effect of the 0.075 PV, 60 mPa·s polymer preslug was better than that of the 0.093 PV, 40 mPa·s and 0.064 PV, 80 mPa·s polymer preslugs. The change in the viscosity of the polymer preslug did not enable the ASP system to effectively exploit the low-permeability layer though. As the viscosity increased, the pressure difference between injection and production increased; the remaining oil could be exploited effectively at the bottom of the high-permeability layer and the medium-permeability layer as well as the injection end of the medium-permeability layer. If the viscosity is too small, the high-permeability area cannot be effectively blocked by the injected chemical agent, and if the viscosity is too large, the injected chemical agent cannot produce good elastic displacement relationship, which will lead to ineffective chemical agent flow. Therefore, the polymer preslug viscosity of the ASP flooding system should be moderate, and cores with different heterogeneity should have a reasonable viscosity matching range.


2021 ◽  
Vol 20 (5) ◽  
pp. 399-404
Author(s):  
V. P. Lugovoi

The paper presents a comparative theoretical analysis of the movements of the curved rods of various curvature forms, which can be applied as tools for ultrasonic treatment of holes in fragile materials. It has been shown that the traditional processing of holes by an ultrasonic method is based on the use of straight rods, in which the amplitudes of displacements on the working – free end corresponds to the value of displacements at the point of its attachment to the ultrasonic oscillation concentrator. Supplementing the configuration of a straight rod with a curvilinear shape in the form of a circular arc or a spiral twisted by one turn will allow obtaining additional displacements caused by the elastic properties of a section with a curved shape. The paper considers several calculated schemes of a curvilinear rod bounded by angles j equal to p/2, p and 2p, fferent direction of the external force action. The obtained results have shown that an increase in the circular arc angle leads to a corresponding increase in the elastic displacement index of the rod free end. In this case, the total displacements of the rod free end will be made from displacements caused by vibrations of the acoustic system and the displacements of a curved thin rod from an external force. Calculations have established that the magnitude of the elastic displacements of curved rods is influenced by the shape and magnitude of the angle, the direction of the external force, the radius of curvature, the rigidity of the cross section. The considered schemes of thin rods with curvilinear sections can find practical application in ultrasonic oscillatory systems for processing small-diameter holes in fragile materials. This increases the intensity of tool oscillations and improves the process performance.


2021 ◽  
Vol 87 (8) ◽  
pp. 64-68
Author(s):  
V. M. Matyunin ◽  
A. Yu. Marchenkov ◽  
N. Abusaif ◽  
M. V. Goryachkina ◽  
R. V. Rodyakina ◽  
...  

Methods for evaluation of Young’s modulus (Em) of structural materials by instrumented indentation using ball indenter have been considered. All these techniques are based on the solution of elastic contact problems performed by H. Hertz. It has been shown that registration of the initial elastic region in the «load – displacement» indentation diagram provides the Em determination for metals and alloys. However, it is necessary to evaluate accurately the elastic compliance of a device, to use an indenter with a large radius R, and ensure a high surface quality of the test material in advance. Methods for Em determation, when indentation diagrams are recorded in the elastoplastic indentation region, should include the effect of plastic deformation on the elastic displacement calculated by H. Hertz expression. However, it appeared essential to determine the relation between the elastic αel and plastic h components of the total elastoplastic displacement α and the elastic displacement α0 estimated by H. Hertz expression for a definite indentation load. A close correlation between α0 and αel is revealed for steels, aluminum, magnesium, and titanium alloys when using indenters with a radius of R = 0.2 – 5 mm (diameter D = 0.4 – 10 mm) and maximum indentation load Fmax = 47 – 29430 N (4.8 – 3000 kgf). It is also shown that a gradual decrease in Em is observed with an increase in R(D) at the same degree of loading F/D2 for the same material. This fact was explained by the scale factor effect.


2021 ◽  
Vol 2021 (3) ◽  
pp. 4534-4539
Author(s):  
S. Brier ◽  
◽  
J. Regel ◽  
M. Putz ◽  
M. Dix ◽  
...  

The paper presents a numerical simulation of thermal induced tool displacement during milling oper-ation. An unidirectional finite element model is developed which consists of two sections. A CFX model and a thermal transient model. With the aid of CFX module, the conjugated heat transfer be-tween milling tool and coolant fluid is described. The result of these efforts is the body temperature field of the end mill cutter due to thermal load, which is the thermal fingerprint of the cutting process. Subsequently the calculated body temperature field is linked with a transient-structural module to cal-culate the resulting thermal elastic displacement of the milling cutter. The thermo-elastic displace-ment of the tool is determined by examining a pilot node at the tip of the end mill, whose displace-ment is calculated in relation to the global coordinate system of the model.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Cheng‐long Wang ◽  
Yifang Chen ◽  
QingLiang Zeng ◽  
Guoming Liu

In order to solve the problem of poor antiimpact ability of hydraulic support under rock bursting, a kind of thin-walled cylinder crushing component used in the composite spiral antiimpact device was developed, and different structural models were proposed and simulated. On this basis, the model was verified by experiments. The results show that the arrangement of the hollow structure can restrain the ring mode deformation and Euler instability of the tube member in the crushing yield and can carry out the buckling deformation according to the expected crushing force during the compression deformation process and effectively reduce the initial peak force. The arrangement of guide grooves can make the buckling deformation more stable and regular, which can effectively reduce the initial peak force and elastic displacement. With the smaller wall thickness and the smaller wall thickness of the induced groove, the effective deformation yield stroke of the crushing member increases, and the initial peak force, total energy absorption, average reaction force, and elastic displacement decrease. The simulation results are consistent with the experimental results which will be used in the future works.


2021 ◽  
pp. 48-55
Author(s):  
A. V. Brylev ◽  
S. S. Mikheev

This paper presents the analysis and results of the study of a two-stage shaft fixed in dead centers and a rest device. Cutting forces act on the shaft, causing a bending moment. The analysis of the curvature of the axis of the workpiece, processed on a lathe when based in the centers, using a rest device, is carried out. The formula of elastic displacement of the workpiece axis at the place of the resulting cutting force is obtained. Diagrams of the stresses of the shaft axis displacements are constructed and a conclusion is made. The analysis showed that the greatest deflection is at the point of the cutting forces acting on the shaft. The quality of the part obtained after processing is characterized by accuracy. The parts mating in the product and, as a result, the overall reliability depends on how accurately the size and shape of the part will be maintained during processing. Parts with length of 10 to 12 times larger than the diameter are bent under the action of their own weight and cutting forces, as a result of which they get a barrel-like shape. It is possible to eliminate this by applying special devices for the machine. When processing long nonrigid workpieces, the tools, jigs and fixtures must evenly distribute the clamping force over the surface of the part. These conditions are well provided by technological equipment with pneumatic, hydraulic clamping devices, as well as with various collet clamps, split bushings, diaphragm or cartridges. When processing long non-rigid shafts, rest devices are used. The rest device plays the role of the main or secondary support when working with workpieces; it creates support for large, long parts during processing. It helps to avoid the risk of damage and deformation of the workpiece or the cutting elements of the machine, by giving the workpiece additional stability


2021 ◽  
Vol 11 (6) ◽  
pp. 2623
Author(s):  
Vladimir Kodnyanko ◽  
Stanislav Shatokhin ◽  
Andrey Kurzakov ◽  
Yuri Pikalov ◽  
Maxim Brungardt ◽  
...  

Active aerostatic bearings are capable of providing negative compliance, which can be successfully used to automatically compensate for deformation of the machine tool system in order to reduce the time and improve the quality of metalworking. The article considers an aerostatic radial bearing with external combined throttling systems and an elastic displacement compensator, which is an alternative to aerostatic bearings with air flow rate compensators. The results of the mathematical modeling and theoretical research of stationary and nonstationary modes of operation of bearings with slotted and diaphragm throttling systems are presented. A counter-matrix sweep method has been developed for solving linear and nonlinear boundary value problems in partial derivatives with respect to the function of the square of the pressure in the bearing gap and inter-throttling bearing cavities for any values of the relative shaft eccentricity. A numerical method is proposed for calculating the dynamic quality criteria, and the transfer function of the dynamic compliance of a bearing with small displacements is considered as a linear automatic control system with distributed parameters. An experimental verification of the theoretical characteristics of the bearing was carried out, which showed a satisfactory correspondence among the compared data. It is shown that bearings with a throttle system have the best quantitative and qualitative load characteristics. The possibility of optimal determination of the values of a number of important parameters that provide the bearing with optimal performance and a high stability margin is established. It is shown that bearings with an elastic suspension of the movable sleeve allow one to compensate for significant movements, which can be larger than the size of the air gap by an order of magnitude or more. In these conditions, similar bearings with air flow compensators would be obviously inoperative.


Author(s):  
A. Seregin ◽  
I. Nikitina ◽  
S. Krylova

Increasing the rigidity of universal self-centering devices is one of the topical trends in the design of machine tooling. Calculation of the load distribution between the turns and teeth of a spiral rack and pinion mechanism is a complex engineering problem. When working on the article, it was revealed that an adjacent pair of turns and teeth that are in engagement does not always coincide with a geometrical adjacent pair due to the error in the execution of turns and teeth along the pitch and profile. This is based on experimental data and the proposition that errors in the pitch and profile of the spiral determine the nature of the working pressures in the engagement of the turns and teeth. The article discusses technical solutions in which the rigidity of self-centering devices increases without significant structural changes due to the establishment of the correspondence of the algorithm for changing the elastic properties of parts of the spiral-rack mechanism to the algorithm for changing the load between the bearing elements. Constructive solutions based on the implementation of elastic displacement of the first most loaded turn are proposed, which allows to reduce the interference between the tooth of the cam rack and the turn of the disk spiral. This circumstance contributes to the redistribution of the load in the engagement of the bearing elements of the spiral-rack mechanism. The tests of the developed structures were carried out, which gave positive results.


Sign in / Sign up

Export Citation Format

Share Document