Method of Decreasing the Order of a Partial Differential Equation by Reducing to Two Ordinary Differential Equations

2018 ◽  
Vol 62 (8) ◽  
pp. 27-37
Author(s):  
E. V. Kotova ◽  
V. A. Kudinov ◽  
E. V. Stefanyuk ◽  
T. B. Tarabrina
1975 ◽  
Vol 15 (04) ◽  
pp. 347-355 ◽  
Author(s):  
M.L. Wasserman ◽  
A.S. Emanuel ◽  
J.H. Seinfeld

Abstract This paper applies material presented by Chen et al. and by Chavent et al to practical reservoir problems. The pressure history-matching algorithm used is initially based on a discretized single-phase reservoir model. Multiphase effects are approximately treated in the single-phase model by multiplying the transmissibility and storage terms by saturation-dependent terms that are obtained from a multiphase simulator run. Thus, all the history matching is performed by a "pseduo" single-phase model. The multiplicative factors for transmissibility and storage are updated when necessary. The matching technique can change any model permeability thickness or porosity thickness value. Three field examples are given. Introduction History matching using optimal-control theory was introduced by two sets of authors. Their contributions were a major breakthrough in attacking the long-standing goal of automatic history matching. This paper extends the work presented by Chen et al. and Chavent et al. Specifically, we focus on three areas.We derive the optimal-control algorithm using a discrete formulation. Our reservoir simulator, which is a set of ordinary differential equations, is adjoined to the function to be minimized. The first variation is taken to yield equations for computing Lagrange multipliers. These Lagrange multipliers are then used for computing a gradient vector. The discrete formulation keeps the adjoint equations consistent with the reservoir simulator.We include the effects of saturation change in history-matching pressures. We do this in a fashion that circumvents the need for developing a full multiphase optimal-control code.We show detailed results of the application of the optimal-control algorithm to three field examples. DERIVATION OF ADJOINT EQUATIONS Most implicit-pressure/explicit-saturation-type, finite-difference reservoir simulators perform two calculation stages for each time step. The first stage involves solving an "expansivity equation" for pressure. The expansivity equation is obtained by summing the material-balance equations for oil, gas, and water flow. Once the pressures are implicitly obtained from the expansivity equation, the phase saturations can be updated using their respective balance equations. A typical expansivity equation is shown in Appendix B, Eq. B-1. When we write the reservoir simulation equations as partial differential equations, we assume that the parameters to be estimated are continuous functions of position. The partial-differential-equation formulation is partial-differential-equation formulation is generally termed a distributed-parameter system. However, upon solving these partial differential equations, the model is discretized so that the partial differential equations are replaced by partial differential equations are replaced by sets of ordinary differential equations, and the parameters that were continuous functions of parameters that were continuous functions of position become specific values. Eq. B-1 is a position become specific values. Eq. B-1 is a set of ordinary differential equations that reflects lumping of parameters. Each cell has three associated parameters: a right-side permeability thickness, a bottom permeability thickness, and a pore volume. pore volume.Once the discretized model is written and we have one or more ordinary differential equations per cell, we can then adjoin these differential equations to the integral to be minimized by using one Lagrange multiplier per differential equation. The ordinary differential equations for the Lagrange multipliers are now derived as part of the necessary conditions for stationariness of the augmented objective function. These ordinary differential equations are termed the adjoint system of equations. A detailed example of the procedure discussed in this paragraph is given in Appendix A. The ordinary-differential-equation formulation of the optimal-control algorithm is more appropriate for use with reservoir simulators than the partial-differential-equation derivation found in partial-differential-equation derivation found in Refs. 1 and 2. SPEJ P. 347


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
P. G. L. Leach ◽  
K. S. Govinder ◽  
K. Andriopoulos

Hidden symmetries entered the literature in the late Eighties when it was observed that there could be gain of Lie point symmetry in the reduction of order of an ordinary differential equation. Subsequently the reverse process was also observed. Such symmetries were termed “hidden”. In each case the source of the “new” symmetry was a contact symmetry or a nonlocal symmetry, that is, a symmetry with one or more of the coefficient functions containing an integral. Recent work by Abraham-Shrauner and Govinder (2006) on the reduction of partial differential equations demonstrates that it is possible for these “hidden” symmetries to have a point origin. In this paper we show that the same phenomenon can be observed in the reduction of ordinary differential equations and in a sense loosen the interpretation of hidden symmetries.


2021 ◽  
Vol 41 (5) ◽  
pp. 685-699
Author(s):  
Ivan Tsyfra

We study the relationship between the solutions of stationary integrable partial and ordinary differential equations and coefficients of the second-order ordinary differential equations invariant with respect to one-parameter Lie group. The classical symmetry method is applied. We prove that if the coefficients of ordinary differential equation satisfy the stationary integrable partial differential equation with two independent variables then the ordinary differential equation is integrable by quadratures. If special solutions of integrable partial differential equations are chosen then the coefficients satisfy the stationary KdV equations. It was shown that the Ermakov equation belong to a class of these equations. In the framework of the approach we obtained the similar results for generalized Riccati equations. By using operator of invariant differentiation we describe a class of higher order ordinary differential equations for which the group-theoretical method enables us to reduce the order of ordinary differential equation.


Author(s):  
Michael Doebeli

This chapter discusses partial differential equation models. Partial differential equations can describe the dynamics of phenotype distributions of polymorphic populations, and they allow for a mathematically concise formulation from which some analytical insights can be obtained. It has been argued that because partial differential equations can describe polymorphic populations, results from such models are fundamentally different from those obtained using adaptive dynamics. In partial differential equation models, diversification manifests itself as pattern formation in phenotype distribution. More precisely, diversification occurs when phenotype distributions become multimodal, with the different modes corresponding to phenotypic clusters, or to species in sexual models. Such pattern formation occurs in partial differential equation models for competitive as well as for predator–prey interactions.


1927 ◽  
Vol 46 ◽  
pp. 126-135 ◽  
Author(s):  
E. T. Copson

A partial differential equation of physics may be defined as a linear second-order equation which is derivable from a Hamiltonian Principle by means of the methods of the Calculus of Variations. This principle states that the actual course of events in a physical problem is such that it gives to a certain integral a stationary value.


2020 ◽  
Vol 98 (7) ◽  
pp. 683-688
Author(s):  
Smail Bougouffa ◽  
Lazhar Bougoffa

In this paper, we illustrate the use of the method of the characteristics in various dissipative models of a single harmonic oscillator. The master equation governing the process can be transformed to a partial differential equation on the Wigner distribution, which in turn can be split to a system of coupled differential equations. We present a useful technique that can be used to separate the system without increasing the order and then the solutions can be obtained. The obtained solutions are used to calculate the average of energy observable of the system. This procedure can be extended to solve some other complex similar problems.


Sign in / Sign up

Export Citation Format

Share Document