scholarly journals Rhizosphere microbial communities explain positive effects of diverse crop rotations on corn and soybean performance: microbiome explain benefits of diverse rotations.

Author(s):  
Maria-Soledad Benitez ◽  
Patrick Ewing ◽  
Shannon L. Osborne ◽  
R. Michael Lehman

Abstract In agricultural systems, crop rotation diversity influences soil microbial communities and often increases crop productivity. Yet the specific contributions of microorganisms to crop rotation benefits are unknown. We studied corn (Zea mays L.) and soybean (Glycine max L.) within a two-year corn-soybean rotation and four, four-year, four-crop rotations with varying crop sequences. We hypothesized that rhizosphere microbial communities would predict crop productivity contingent on rotation diversity and previous crop legacy. Sampling at seedling and flowering stages, we assessed rhizosphere bacterial and fungal communities, plant tissue nutrients, aboveground biomass, and yield. Rhizosphere communities varied with rotation diversity and previous crop legacy. Concurrently, corn and soybean yields and biomasses were larger in more diverse rotations and with different crop legacies, but not tissue nutrients. Fungal communities predicted the suppression of corn seedlings when following soybean, and soybean seedlings when following corn, independently of rotation effects. This fungal effect ultimately predicted suppressed corn yield in the corn-soybean rotation, while in more diverse rotations, bacterial communities predicted corn would fully recover from a soybean legacy by flowering. These results suggest that corn-soybean rotations select for yield-suppressive microbial communities and highlight a microbial mechanism behind the benefits of diverse rotations.

Author(s):  
Saulius GUŽYS ◽  
Stefanija MISEVIČIENĖ

The use of nitrogen fertilizer is becoming a global problem; however continuous fertilization with nitrogen ensures large and constant harvests. An 8 year research (2006–2013) was conducted to evaluate the relationships between differently fertilized cultivated plant rotations. The research was conducted in Lipliunai (Lithuania) in the agroecosystem with nitrogen metabolism in fields with deeper carbonaceous soil, i.e. Endocalcari Endohypogleyic Cambisol (CMg-n-w-can). The research area covered three drained plots where crop rotation of differently fertilized cereals and perennial grasses was applied. Samples of soil, water and plants were investigated in the Chemical Analysis Laboratory of the Aleksandras Stulginskis University certified by the Environment Ministry of the Republic of Lithuania. The greatest productivity was found in a crop rotation with higher fertilization (N32-140). In crop rotation with lower fertilization (N24-90) productivity of cereals and perennial grasses (N0-80) was 11–35 % lower. The highest amount of mineral soil nitrogen was found in cereal crop rotation with higher fertilization. It was influenced by fertilization and crop productivity. The lowest Nmin and Ntotal concentrations in drainage water were found in grasses crop rotation. Crop rotations of differently fertilized cereals increased nitrogen concentration in drainage water. Nmin concentration in water depended on crop productivity, quantity of mineral soil nitrogen, fertilization, and nitrogen balance. The lowest nitrogen leaching was found in the crop rotation of grasses. Cereal crop rotation increased nitrogen leaching by 12–42 %. The usage of all crop rotations resulted in a negative nitrogen balance, which essentially depended on fertilization with nitrogen fertilizer.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
A. Marais ◽  
M. Hardy ◽  
M. Booyse ◽  
A. Botha

Different plants are known to have different soil microbial communities associated with them. Agricultural management practices such as fertiliser and pesticide addition, crop rotation, and grazing animals can lead to different microbial communities in the associated agricultural soils. Soil dilution plates, most-probable-number (MPN), community level physiological profiling (CLPP), and buried slide technique as well as some measured soil physicochemical parameters were used to determine changes during the growing season in the ecosystem profile in wheat fields subjected to wheat monoculture or wheat in annual rotation with medic/clover pasture. Statistical analyses showed that soil moisture had an over-riding effect on seasonal fluctuations in soil physicochemical and microbial populations. While within season soil microbial activity could be differentiated between wheat fields under rotational and monoculture management, these differences were not significant.


2015 ◽  
Vol 13 (2) ◽  
pp. e0303 ◽  
Author(s):  
Saulius Guzys ◽  
Stefanija Miseviciene

<p>Inappropriate use of nitrogen fertilisers is becoming a global problem; however, continuous fertilisation with N fertiliser ensures large and constant harvests. To evaluate the relationships of differently fertilised cultivated plant rotation with N metabolism in the agroecosystem the research was conducted between 2006 and 2013 at Lipliūnai, Lithuania, in fields with calcareous gley brown soil, <em>i.e.</em> <em>Endocalcari Endohypogleyic Cambisol</em> (<em>CMg-n-w-can</em>). The research area covered three drained plots where crop rotation of differently fertilised cereals and perennial grasses were applied. The greatest productivity was found in a higher fertilisation (TII, 843 kg N/ha) cereals crop rotation. With less fertilisation (TI, 540 kg N/ha) crop rotation productivity of cereals and perennial grasses (TIII, 218 kg N/ha) was 11-35% lower. The highest amount of mineral soil N (average 76 kg/ha) was found in TI. It was influenced by fertilisation (<em>r</em>=0.71) and crop productivity (<em>r</em>=0.39). TIII tended to reduce N<sub>min</sub> (12.1 mg/L) and N<sub>total</sub> (12.8 mg/L) concentrations in drainage water and leaching of these elements (7 and 8 kg/ha). N<sub>min</sub> and N<sub>total</sub> concentrations in the water depended on crop productivity respectively (<em>r</em>=0.48; <em>r</em>=0.36), quantity of mineral soil N (<em>r</em>=0.65; <em>r</em>=0.59), fertilisation (<em>r</em>=0.59; <em>r</em>=0.52), and N balance (<em>r</em>=0.26; <em>r</em>=0.35). Cereal crop rotation increased N leaching by 12-42%. The use of all crop rotations resulted in a negative N balance. Nitrogen balance depended on fertilisation with N fertiliser (<em>r</em>=0.55). The application of perennial grasses crop rotation in agricultural fields was the best environmental tool, reducing N migration to drainage.</p>


2020 ◽  
Vol 21 (6) ◽  
pp. 752-763
Author(s):  
A. K. Svechnikov

It is known that significant saving of nitrogen fertilizers are due to perennial legume-cereal grasses use in crop rotations. From 2013 to 2018in the Mari El Republic six-field grass-grain fodder crop rotations were compared on sod-podzolic soils with a very high level of phosphorus and potassium. In the third rotation their productivity and bioenergetic efficiency, changes in several important soil fertility indicators, and crud protein content in the produced fodder were evaluated. The main difference between the crop rotations was based on the duration of the clover-alfalfa-timothy grass mixture (CAG) use: from one year to three years. In given experiment there was also studied the effect of mineral nitrogen (variants N0, N60) against Р60К60 background on the yield of crop rotations. During six years, there was no significant soil acidification in the variants. Each additional year of clover-alfalfa-timothy grass mixture use raised the energy efficiency ratio of crop rotations by 24-47 % (from 1.13-1.24 by one-year use to 2.08-2.25 by three years of use). Three-year CAG use as compared with one- and two-years has given to the crop rotation significant advantages in energy efficiency (up to two times) and productivity (approximately 40-80 %) of cultivated crops. After refusing to apply nitrogen fertilizations in such crop rotation, average crop productivity, soil humus and nitrogen content in the soil were better preserved. The average crude protein content in dry matter of the obtained fodder increased from 12.7 % to 14.6 % when prolonging theca use up to two years. The average energy value of the yield per rotation was recorded low (8.4-8.7 MJ/kg) and did not depend on the studied factors.


2021 ◽  
Vol 9 (7) ◽  
pp. 407-421
Author(s):  
Nawal Al-Hajaj

In this study, we reviewed weed seed bank dynamic and main agriculture operations to come up with the weed seed management modeling designed to increase crop productivity by removing weed competition. Weed contributing with 10% loss of total global grain production. Weed seed bank regulate by five demographic processes seedling recruitment and survival, seed production, dispersal and seed survival in soil. The main agriculture operations that interference with weed seed bank are crop rotation and primary tillage. Tillage systems affect weed emergence, management, and seed production; therefore, changing tillage practices changes the composition, vertical distribution, and density of weed seed bank in agricultural soils. Weed species vary in their response to various crop rotations, due to the variability of weed-crop competition in their relative capacity to capture growth–limiting resources. Crop rotations affect weed emergence, management, composition, and density of weed seed bank. Finally, the study suggests elevating crop competitiveness against weeds, through a combination of crop rotation and reduce_ zero tillage, has strong potential to reduce weed-induced yield losses in crop.


2019 ◽  
Vol 6 (1) ◽  
pp. 181054
Author(s):  
Zhenhua Yu ◽  
Jian Jin ◽  
Yansheng Li ◽  
Yue Yang ◽  
Yue Zhao ◽  
...  

Eroded black soils (classified as Mollisols) lead to a thinner topsoil layer, reduced organic carbon storage and declined crop productivity. Understanding the changes in soil microbial communities owing to soil erosion is of vital importance as soil microbial communities are sensitive indicators of soil condition and are essential in soil nutrient cycling. This study used the reconstructed facility with 10, 20 and 30 cm topsoil thickness under no-till soya bean–corn rotation in black soil region of Northeast China. Illumina MiSeq sequencing targeting 16S rRNA, q PCR and soil respiration measurement were performed to assess the changes in soya bean and corn rhizosphere bacterial communities, as well as their abundance and activities due to the topsoil thickness. The results showed that soil bacterial communities from both soya bean and corn were more sensitive to topsoil removal than to soil biogeochemical characteristics. Topsoil depths significantly influenced both soya bean and corn bacterial communities, while they only significantly influenced the bacterial abundance and respiration in corn. We also found that the topsoil depths significantly induced the changes in phyla and genera from both soya bean and corn rhizosphere bacterial community, which aid further understandings on how topsoil layer influences the global nutrient cycling of Mollisols by influencing the change in microbial communities.


2021 ◽  
pp. 108309
Author(s):  
Maria-Soledad Benitez ◽  
Patrick M. Ewing ◽  
Shannon L. Osborne ◽  
R. Michael Lehman

Sign in / Sign up

Export Citation Format

Share Document