scholarly journals The Hewitt Creek Watershed Group: A study of mechanisms that led to the adoption of farm management practices to improve water quality

2010 ◽  
Author(s):  
Jean Marie Mcguire
1993 ◽  
Vol 28 (3-5) ◽  
pp. 379-387 ◽  
Author(s):  
S. Mostaghimi ◽  
P. W. McClellan ◽  
R. A. Cooke

The Nomini Creek Watershed/Water Quality monitoring project was initiated in 1985, as part of the Chesapeake Bay Agreement of 1983, to quantify the impacts of agricultural best management practices (BMPs) on improving water quality. The watershed monitoring system was designed to provide a comprehensive assessment of the quality of surface and groundwater as influenced by changes in land use, agronomic, and cultural practices in the watershed over the duration of the project. The primary chemical characteristics monitored include both soluble and sediment-bound nutrients and pesticides in surface and groundwater. Water samples from 8 monitoring wells located in agricultural areas in the watershed were analyzed for 22 pesticides. A total of 20 pesticides have been detected in water samples collected. Atrazine is the most frequently detected pesticide. Detected concentrations of atrazine ranged from 0.03 - 25.56 ppb and occurred in about 26 percent of the samples. Other pesticides were detected at frequencies ranging from 1.6 to 14.2 percent of all samples collected and concentrations between 0.01 and 41.89 ppb. The observed concentrations and spatial distributions of pesticide contamination of groundwater are compared to land use and cropping patterns. Results indicate that BMPs are quite effective in reducing pesticide concentrations in groundwater.


1999 ◽  
Vol 39 (12) ◽  
pp. 133-140
Author(s):  
J. Y. Li ◽  
D. Banting

Storm water quality management in urbanized areas remains a challenge to Canadian municipalities as the funding and planning mechanisms are not well defined. In order to provide assistance to urbanized municipalities in the Great Lakes areas, the Great Lakes 2000 Cleanup Fund and the Ontario Ministry of the Environment commissioned the authors to develop a Geographic Information System planning tool for storm water quality management in urbanized areas. The planning tool comprises five steps: (1) definition of storm water retrofit goals and objectives; (2) identification of appropriate retrofit storm water management practices; (3) formulation of storm water retrofit strategies; (4) evaluation of strategies with respect to retrofit goals and objectives; and (5) selection of storm water retrofit strategies. A case study of the fully urbanized Mimico Creek wateshed in the City of Toronto is used to demonstrate the application of the planning tool.


EDIS ◽  
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Martha C. Monroe ◽  
Charles E. Barrett

Best management practices (BMPs) are cost-efficient processes that improve daily life, from healthcare to food service. Agricultural BMPs aim to reduce water use and improve water quality and soil on farms and ranches as well as to encourage better forestry practices and lawn care. This fact sheet introduces non-farmers to agricultural BMPs.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 539-548 ◽  
Author(s):  
John F. Walker ◽  
David J. Graczyk

Nonpoint-source contamination accounts for a substantial part of the water quality problems in many watersheds. The Wisconsin Nonpoint Source Water Pollution Abatement Program provides matching money for voluntary implementation of various best management practices (BMPs). The effectiveness of BMPs on a drainage-basin scale has not been adequately assessed in Wisconsin by use of data collected before and after BMP implementation. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, monitored water quality in the Black Earth Creek watershed in southern Wisconsin from October 1984 through September 1986 (pre-BMP conditions). BMP implementation began during the summer of 1989 and is planned to continue through 1993. Data collection resumed in fall 1989 and is intended to provide information during the transitional period of BMP implementation (1990-93) and 2 years of post-BMP conditions (1994-95). Preliminary results presented for two subbasins in the Black Earth Creek watershed (Brewery and Garfoot Creeks) are based on data collected during pre-BMP conditions and the first 3 years of the transitional period. The analysis includes the use of regressions to control for natural variability in the data and, hence, enhance the ability to detect changes. Data collected to date (1992) indicate statistically significant differences in storm mass transport of suspended sediment and ammonia nitrogen at Brewery Creek. The central tendency of the regression residuals has decreased with the implementation of BMPs; hence, the improvement in water quality in the Brewery Creek watershed is likely a result of BMP implementation. Differences in storm mass transport at Garfoot Creek were not detected, primarily because of an insufficient number of storms in the transitional period. As practice implementation continues, the additional data will be used to determine the level of management which results in significant improvements in water quality in the two watersheds. Future research will address techniques for including snowmelt runoff and early spring storms.


2019 ◽  
Vol 50 (4) ◽  
pp. 1047-1061 ◽  
Author(s):  
Palki Arora ◽  
Jasmeet Lamba ◽  
Puneet Srivastava ◽  
Latif Kalin

Abstract The linkages among the best management practices implemented at the field level and downstream water quality improvement at the watershed level are complex, because the processes that link management practices and watershed-level water quality span a range of scales. However, it is important to understand the effect of nutrient management strategies on watershed-level water quality because most of the water quality evaluation occurs at the watershed scale. The overall goal of this study was to quantify the effect of broiler litter application method (surface vs. subsurface application) on phosphorus (P) and nitrogen (N) losses in surface runoff using the Soil and Water Assessment Tool (SWAT) model. The research was conducted in the Big Creek watershed (8,024 ha) located in Mobile County, Alabama, USA. At the hydrological response unit level, the subsurface application of broiler litter to pastures reduced average annual (1991–2015) total P and N losses in surface runoff by 72% and 33%, respectively, compared to surface application of broiler litter. At the watershed outlet, subsurface application of broiler litter to pastures (covered 43% of the watershed area after the land use change scenario) reduced average annual (1991–2015) total P and N losses by 39% and 20%, respectively.


2008 ◽  
Vol 5 (4) ◽  
pp. 1821-1862 ◽  
Author(s):  
C. Maringanti ◽  
I. Chaubey ◽  
M. Arabi ◽  
B. Engel

Abstract. Pesticides (particularly atrazine used in corn fields) are the foremost source of water contamination in many of the water bodies in Midwestern corn belt, exceeding the 3 ppb MCL established by the U.S. EPA for drinking water. Best management practices (BMPs), such as buffer strips and land management practices, have been proven to effectively reduce the pesticide pollution loads from agricultural areas. However, selection and placement of BMPs in watersheds to achieve an ecologically effective and economically feasible solution is a daunting task. BMP placement decisions under such complex conditions require a multi-objective optimization algorithm that would search for the best possible solution that satisfies the given watershed management objectives. Genetic algorithms (GA) have been the most popular optimization algorithms for the BMP selection and placement problem. Most optimization models also had a dynamic linkage with the water quality model, which increased the computation time considerably thus restricting them to apply models on field scale or relatively smaller (11 or 14 digit HUC) watersheds. However, most previous works have considered the two objectives individually during the optimization process by introducing a constraint on the other objective, therefore decreasing the degree of freedom to find the solution. In this study, the optimization for atrazine reduction is performed by considering the two objectives simultaneously using a multi-objective genetic algorithm (NSGA-II). The limitation with the dynamic linkage with a distributed parameter watershed model was overcome through the utilization of a BMP tool, a database that stores the pollution reduction and cost information of different BMPs under consideration. The model was used for the selection and placement of BMPs in Wildcat Creek Watershed (located in Indiana, for atrazine reduction. The most ecologically effective solution from the model had an annual atrazine concentration reduction of 30%, from the baseline with a BMP implementation cost of $18 million. The pareto-optimal fronts generated between the two optimized objective functions can be used to achieve desired water quality goals with minimum BMP implementation cost for the watershed.


Sign in / Sign up

Export Citation Format

Share Document