scholarly journals Differential inequality and non-oscillation of fourth order differential equation

2021 ◽  
Vol 104 (4) ◽  
pp. 103-109
Author(s):  
A.A. Kalybay ◽  
◽  
A.O. Baiarystanov ◽  

The oscillatory theory of fourth order differential equations has not yet been developed well enough. The results are known only for the case when the coefficients of differential equations are power functions. This fact can be explained by the absence of simple effective methods for studying such higher order equations. In this paper, the authors investigate the oscillatory properties of a class of fourth order differential equations by the variational method. The presented variational method allows to consider any arbitrary functions as coefficients, and our main results depend on their boundary behavior in neighborhoods of zero and infinity. Moreover, this variational method is based on the validity of a certain weighted differential inequality of Hardy type, which is of independent interest. The authors of the article also find two-sided estimates of the least constant for this inequality, which are especially important for their applications to the main results on the oscillatory properties of these differential equations.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Aigerim Kalybay ◽  
Ryskul Oinarov ◽  
Yaudat Sultanaev

AbstractIn this paper, we investigate the oscillatory properties of two fourth order differential equations in dependence on boundary behavior of its coefficients at infinity. These properties are established based on two-sided estimates of the least constant of a certain weighted differential inequality.


Author(s):  
W. N. Everitt

SynopsisThis paper considers an extension of the following inequality given in the book Inequalities by Hardy, Littlewood and Polya; let f be real-valued, twice differentiable on [0, ∞) and such that f and f are both in the space fn, ∞), then f′ is in L,2(0, ∞) andThe extension consists in replacing f′ by M[f] wherechoosing f so that f and M[f] are in L2(0, ∞) and then seeking to determine if there is an inequality of the formwhere K is a positive number independent of f.The analysis involves a fourth-order differential equation and the second-order equation associated with M.A number of examples are discussed to illustrate the theorems obtained and to show that the extended inequality (*) may or may not hold.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 520 ◽  
Author(s):  
Osama Moaaz ◽  
Ioannis Dassios ◽  
Omar Bazighifan ◽  
Ali Muhib

We study the oscillatory behavior of a class of fourth-order differential equations and establish sufficient conditions for oscillation of a fourth-order differential equation with middle term. Our theorems extend and complement a number of related results reported in the literature. One example is provided to illustrate the main results.


Author(s):  
C. G. M. Grudniewicz

SynopsisA new method is developed for obtaining the asymptotic form of solutions of the fourth-order differential equationwherem, nare integers and 1 ≦m,n≦ 2. The method gives new, shorter proofs of the well-known results of Walker in deficiency index theory and covers the cases not considered by Walker.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Samir H. Saker

For a fourth-order differential equation, we will establish some new Lyapunov-type inequalities, which give lower bounds of the distance between zeros of a nontrivial solution and also lower bounds of the distance between zeros of a solution and/or its derivatives. The main results will be proved by making use of Hardy’s inequality and some generalizations of Opial-Wirtinger-type inequalities involving higher-order derivatives. Some examples are considered to illustrate the main results.


Author(s):  
W. A. Skrapek

SYNOPSISIn this paper we give sufficient conditions (Theorems 1 and 2) for the instability of the fourth order differential equation


Author(s):  
M. S. P. Eastham

SynopsisA new method is developed for identifying real-valued coefficientsr(x),p(x), andq(x)for which all solutions of the fourth-order differential equationareL2(0, ∞). The results are compared with those derived from the asymptotic theory of Devinatz, Walker, Kogan and Rofe-Beketov.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Omar Bazighifan ◽  
Alanoud Almutairi

AbstractIn this paper, we study the oscillation of a class of fourth-order Emden–Fowler delay differential equations with neutral term. Using the Riccati transformation and comparison method, we establish several new oscillation conditions. These new conditions complement a number of results in the literature. We give examples to illustrate our main results.


Sign in / Sign up

Export Citation Format

Share Document