scholarly journals Hepatic betaine-homocysteine methyltransferase and methionine synthase activity and intermediates of the methionine cycle are altered by choline supply during negative energy balance in Holstein cows

2019 ◽  
Vol 102 (9) ◽  
pp. 8305-8318 ◽  
Author(s):  
Danielle N. Coleman ◽  
Mario Vailati-Riboni ◽  
Ahmed A. Elolimy ◽  
Felipe C. Cardoso ◽  
Sandra L. Rodriguez-Zas ◽  
...  
Proceedings ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 9
Author(s):  
Deise Aline Knob ◽  
André Thaler Neto ◽  
Helen Schweizer ◽  
Anna Weigand ◽  
Roberto Kappes ◽  
...  

Depending on the breed or crossbreed line, cows have to cope with a more or less severe negative energy balance during the period of high milk yields in early lactation, which can be detected by beta-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFAs) in blood. Preventing cows from undergoing a severe negative energy balance by breeding and/or feeding measures is likely to be supported by the public and may help to improve the sustainability of milk production. The aim was to compare BHBA and NEFA concentrations in the blood of Holstein and Simmental cows and their crosses during the prepartum period until the end of lactation. In total, 164 cows formed five genetic groups according to their theoretic proportion of Holstein and Simmental genes as follows: Holstein (100% Holstein; n = 9), R1-Hol (51–99% Holstein; n = 30), F1 crossbreds (50% Holstein, 50% Simmental; n = 17), R1-Sim (1–49% Holstein; n = 81) and Simmental (100% Simmental; n = 27). NEFA and BHBA were evaluated once a week between April 2018 and August 2019. A mixed model analysis with fixed effects breed, week (relative to calving), the interaction of breed and week, parity, calving year, calving season, milking season, and the repeated measure effect on cows was used. Holstein cows had higher NEFAs (0.196 ± 0.013 mmol/L), and Simmental cows had the lowest NEFA concentrations (0.147 ± 0.008 mmol/L, p = 0.03). R1-Sim, F1 and R1-Hol cows had intermediate values (0.166 ± 0.005, 0.165 ± 0.010, 0.162 ± 0.008 mmol/L; respectively). The highest NEFA value was found in the first week after calving (0.49 ± 0.013 mmol/L). BHBA did not differ among genetic groups (p = 0.1007). There was, however, an interaction between the genetic group and week (p = 0.03). While Simmental, R1-Sim and F1 cows had the highest BHBA value, the second week after calving (0.92 ± 0.07 and 1.05 ± 0.04, and 1.10 ± 0.10 mmol/L, respectively), R1-Hol and Holstein cows showed the BHBA peak at the fourth week after calving (1.16 ± 0.07 and 1.36 ± 0.12 mmol/L, respectively). Unexpectedly, Holstein cows had a high BHBA peak again at week 34 after calving (1.68 ± 0.21 mmol/L). The genetic composition of the cows affects NEFA and BHBA. Simmental and R1-Sim cows mobilize fewer body reserves after calving. Therefore, dairy cows with higher degrees of Simmental origin might be more sustainable in comparison with Holstein genetics in the present study.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 309
Author(s):  
Deise Aline Knob ◽  
André Thaler Neto ◽  
Helen Schweizer ◽  
Anna C. Weigand ◽  
Roberto Kappes ◽  
...  

Crossbreeding in dairy cattle has been used to improve functional traits, milk composition, and efficiency of Holstein herds. The objective of the study was to compare indicators of the metabolic energy balance, nonesterified fatty acids (NEFA), beta-hydroxybutyrate (BHBA), glucose, body condition score (BCS) back fat thickness (BFT), as well as milk yield and milk composition of Holstein and Simmental cows, and their crosses from the prepartum period until the 100th day of lactation at the Livestock Center of the Ludwig Maximilians University (Munich, Germany). In total, 164 cows formed five genetic groups according to their theoretic proportion of Holstein and Simmental genes as follows: Holstein (100% Holstein; n = 9), R1-Hol (51–99% Holstein; n = 30), first generation (F1) crossbreds (50% Holstein, 50% Simmental; n = 17), R1-Sim (1–49% Holstein; n = 81) and Simmental (100% Simmental; n = 27). The study took place between April 2018 and August 2019. BCS, BFT blood parameters, such as BHBA, glucose, and NEFA were recorded weekly. A mixed model analysis with fixed effects breed, week (relative to calving), the interaction of breed and week, parity, calving year, calving season, milking season, and the repeated measure effect of cow was used. BCS increased with the Simmental proportion. All genetic groups lost BCS and BFT after calving. Simmental cows showed lower NEFA values. BHBA and glucose did not differ among genetic groups, but they differed depending on the week relative to calving. Simmental and R1-Sim cows showed a smaller effect than the other genetic groups regarding changes in body weight, BCS, or back fat thickness after a period of a negative energy balance after calving. There was no significant difference for milk yield among genetic groups, although Simmental cows showed a lower milk yield after the third week after calving. Generally, Simmental and R1-Simmental cows seemed to deal better with a negative energy balance after calving than purebred Holstein and the other crossbred lines. Based on a positive heterosis effect of 10.06% for energy corrected milk (ECM), the F1, however, was the most efficient crossbred line.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1674
Author(s):  
Ilona Strączek ◽  
Krzysztof Młynek ◽  
Agata Danielewicz

A significant factor in improving the performance of dairy cows is their physiological ability to correct a negative energy balance (NEB). This study, using Simmental (SIM) and Holstein-Friesian (HF) cows, aimed to assess changes in NEB (non-esterified fatty acid; body condition score; and C16:0, C18:0, and C18:1) and its effect on the metabolic efficiency of the liver (β-hydroxybutyrate and urea). The effects of NEB on daily yield, production at peak lactation and its duration, and changes in selected milk components were assessed during complete lactation. Up to peak lactation, the loss of the body condition score was similar in both breeds. Subsequently, SIM cows more efficiently restored their BCS. HF cows reached peak lactation faster and with a higher milk yield, but they were less able to correct NEB. During lactation, their non-esterified fatty acid, β-hydroxybutyrate, C16:0, C18:0, C18:1, and urea levels were persistently higher, which may indicate less efficient liver function during NEB. The dynamics of NEB were linked to levels of leptin, which has anorectic effects. Its content was usually higher in HF cows and during intensive lactogenesis. An effective response to NEB may be exploited to improve the production and nutritional properties of milk. In the long term, it may extend dairy cows’ productive life and increase lifetime yield.


2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


Diabetes ◽  
2018 ◽  
Vol 67 (5) ◽  
pp. 831-840 ◽  
Author(s):  
Daniel S. Lark ◽  
Jamie R. Kwan ◽  
P. Mason McClatchey ◽  
Merrygay N. James ◽  
Freyja D. James ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1814 ◽  
Author(s):  
Yu Chooi ◽  
Cherlyn Ding ◽  
Zhiling Chan ◽  
Jezebel Lo ◽  
John Choo ◽  
...  

Weight loss, induced by chronic energy deficit, improves the blood lipid profile. However, the effects of an acute negative energy balance and the comparative efficacy of diet and exercise are not well-established. We determined the effects of progressive, acute energy deficits (20% or 40% of daily energy requirements) induced by a single day of calorie restriction (n = 19) or aerobic exercise (n = 13) in healthy subjects (age: 26 ± 9 years; body mass index (BMI): 21.8 ± 2.9 kg/m2). Fasting plasma concentrations of very low-, intermediate-, low-, and high-density lipoprotein (VLDL, LDL, IDL, and HDL, respectively) particles and their subclasses were determined using nuclear magnetic resonance. Total plasma triglyceride and VLDL-triglyceride concentrations decreased after calorie restriction and exercise (all p ≤ 0.025); the pattern of change was linear with an increasing energy deficit (all p < 0.03), with no evidence of plateauing. The number of circulating large and medium VLDL particles decreased after diet and exercise (all p < 0.015), with no change in small VLDL particles. The concentrations of IDL, LDL, and HDL particles, their relative distributions, and the particle sizes were not altered. Our data indicate that an acute negative energy balance induced by calorie restriction and aerobic exercise reduces triglyceride concentrations in a dose-dependent manner, by decreasing circulating large and medium VLDL particles.


2021 ◽  
Vol 3 (1) ◽  
pp. 11-16
Author(s):  
Muhammad Rayhan ◽  
Caribu Hadi Prayitno ◽  
Yusuf Subagyo

Pengaruh pemberian mineral organik dan tepung kulit bawang putih yang mengandung polifenol salah satunya adalah allisin dapat menghambat kerja enzim HMG-CoA pada bakteri Archea rumen, sehingga terjadi H2 untuk pembentukan gas methan dialihkan kearah pembentukan propionat. Propionat sebagai prekusor pembentuk glukosa darah. Peningkatan propionat memberikan efek pada penurunan asetat. Asetat merupakan prekusor pembentuk kolesterol darah. Allisin juga dapat menghambat superoksidasi, sehingga tidak terjadi kerusakan membran sel dan dapat mempertahankan hemoglobin dalam darah. Keseimbangan terjadi terhadap kadar glukosa darah dan recovery tubuh ternak akan membaik. Pada ternak yang sedang bunting sering terjadi negative energy balance. Penelitian ini bertujuan untuk mengkaji pengaruh pemberian mineral organik dan tepung kulit bawang putih pada pakan kambing perah terhadap glukosa darah dan recovery tubuh. Materi yang digunakan dalam penelitian adalah kambing Jawa Randu induk bunting laktasi kedua sebanyak 15 ekor. Perlakuan yang diberikan yaitu penambahan tepung kulit bawang putih 30 ppm; Cr organik 1,5 ppm; Se organik 0,3 ppm dan Zn lisinat 40 ppm. Perlakuan yang diujicobakan yaitu R0 terdiri atas Pakan kontrol (Hijauan dan Konsentrat perbandingan 70:30). R1 terdiri ataspakan R0 + Tepung kulit bawang putih (Allium sativum) 30 ppm. R2 terdiri atas pakan R1 + Mineral Organik ( Se 0,3 ppm, Cr 1,5 ppm, Zn 40 ppm). Data dianalisis menggunakan analisis variansi dan dilanjutkan uji LSD. Hasil penelitian menunjukkan bahwa suplementasi tepung kulit bawang putih dan mineral organik pada pakan kambing perah tidak  berpengaruh nyata (P>0,05) terhadap kadar glukosa darah dan recovery tubuh.


2019 ◽  
Vol 74 (10) ◽  
pp. 6133-2019
Author(s):  
YUANYUAN CHEN ◽  
ZHIHAO DONG ◽  
RUIRUI LI ◽  
CHUANG XU

Negative energy balance (NEB) is a common pathological cause of ketosis. As the major organs of lipid metabolism, the liver and fat tissue take part in regulating lipid oxidative capacity and energy demands, which is also a key metabolic pathway that regulates NEB development during the perinatal period. Fibroblast Growth Factor 21 (FGF21) is a novel metabolic regulator involved in the control of fatty acid oxidation and lipid metabolism during a prolonged negative energy balance. Our study determined a correlation between serum FGF21 and β-hydroxybutyric acid (BHBA) levels in dairy cows with ketosis. We used sixty cows with low milk yield, abnormal glucose metabolism, and ketosis. Serum FGF21 and BHBA levels were measured using commercial kits. Serum FGF21 increased with increasing BHBA levels up to 1.6 mmol/L. At BHBA levels > 1.6 mmol/L, FGF21 decreased. Serum FGF21 levels were positively associated with BHBA levels, particularly in dairy cows with subclinical ketosis (r = 0.647, P < 0.01). At BHBA levels between 1.2 mmol/L and 1.6 mmol/L, FGF21 was more closely correlated with BHBA than with other metabolic parameters. At BHBA levels > 1.6 mmol/L, the association between FGF21 and BHBA was not significant. In conclusion, our results show that FGF21 was closely related with SK in cows. FGF21 may be a promising regulator in the prevention of subclinical ketosis.


Sign in / Sign up

Export Citation Format

Share Document