scholarly journals Lipoprotein Subclass Profile after Progressive Energy Deficits Induced by Calorie Restriction or Exercise

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1814 ◽  
Author(s):  
Yu Chooi ◽  
Cherlyn Ding ◽  
Zhiling Chan ◽  
Jezebel Lo ◽  
John Choo ◽  
...  

Weight loss, induced by chronic energy deficit, improves the blood lipid profile. However, the effects of an acute negative energy balance and the comparative efficacy of diet and exercise are not well-established. We determined the effects of progressive, acute energy deficits (20% or 40% of daily energy requirements) induced by a single day of calorie restriction (n = 19) or aerobic exercise (n = 13) in healthy subjects (age: 26 ± 9 years; body mass index (BMI): 21.8 ± 2.9 kg/m2). Fasting plasma concentrations of very low-, intermediate-, low-, and high-density lipoprotein (VLDL, LDL, IDL, and HDL, respectively) particles and their subclasses were determined using nuclear magnetic resonance. Total plasma triglyceride and VLDL-triglyceride concentrations decreased after calorie restriction and exercise (all p ≤ 0.025); the pattern of change was linear with an increasing energy deficit (all p < 0.03), with no evidence of plateauing. The number of circulating large and medium VLDL particles decreased after diet and exercise (all p < 0.015), with no change in small VLDL particles. The concentrations of IDL, LDL, and HDL particles, their relative distributions, and the particle sizes were not altered. Our data indicate that an acute negative energy balance induced by calorie restriction and aerobic exercise reduces triglyceride concentrations in a dose-dependent manner, by decreasing circulating large and medium VLDL particles.

2001 ◽  
Vol 171 (2) ◽  
pp. 339-348 ◽  
Author(s):  
SS Block ◽  
WR Butler ◽  
RA Ehrhardt ◽  
AW Bell ◽  
ME Van Amburgh ◽  
...  

Dairy cows suffer from an intense energy deficit at parturition due to the onset of copious milk synthesis and depressed appetite. Despite this deficit, maternal metabolism is almost completely devoted to the support of mammary metabolism. Evidence from rodents suggests that, during periods of nutritional insufficiency, a reduction in plasma leptin serves to co-ordinate energy metabolism. As an initial step to determine if leptin plays this role in periparturient dairy cows, changes in the plasma concentration of leptin were measured during the period from 35 days before to 56 days after parturition. The plasma concentration of leptin was reduced by approximately 50% after parturition and remained depressed during lactation despite a gradual improvement in energy balance; corresponding changes occurred in the abundance of leptin mRNA in white adipose tissue. To determine whether negative energy balance caused this reduction in circulating leptin, cows were either milked or not milked after parturition. Absence of milk removal eliminated the energy deficit of early lactation, and doubled the plasma concentration of leptin. The plasma concentration of leptin was positively correlated with plasma concentrations of insulin and glucose, and negatively correlated with plasma concentrations of growth hormone and non-esterified fatty acids. In conclusion, the energy deficit of periparturient cows causes a sustained reduction in plasma leptin. This reduction could benefit early lactating dairy cows by promoting a faster increase in feed intake and by diverting energy from non-vital functions such as reproduction.


2019 ◽  
Vol 78 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Nuno Casanova ◽  
Kristine Beaulieu ◽  
Graham Finlayson ◽  
Mark Hopkins

This review examines the metabolic adaptations that occur in response to negative energy balance and their potential putative or functional impact on appetite and food intake. Sustained negative energy balance will result in weight loss, with body composition changes similar for different dietary interventions if total energy and protein intake are equated. During periods of underfeeding, compensatory metabolic and behavioural responses occur that attenuate the prescribed energy deficit. While losses of metabolically active tissue during energy deficit result in reduced energy expenditure, an additional down-regulation in expenditure has been noted that cannot be explained by changes in body tissue (e.g. adaptive thermogenesis). Sustained negative energy balance is also associated with an increase in orexigenic drive and changes in appetite-related peptides during weight loss that may act as cues for increased hunger and food intake. It has also been suggested that losses of fat-free mass (FFM) could also act as an orexigenic signal during weight loss, but more data are needed to support these findings and the signalling pathways linking FFM and energy intake remain unclear. Taken together, these metabolic and behavioural responses to weight loss point to a highly complex and dynamic energy balance system in which perturbations to individual components can cause co-ordinated and inter-related compensatory responses elsewhere. The strength of these compensatory responses is individually subtle, and early identification of this variability may help identify individuals that respond well or poorly to an intervention.


2020 ◽  
Vol 8 (4_suppl3) ◽  
pp. 2325967120S0020
Author(s):  
Julie A. Young ◽  
Jessica Napolitano ◽  
Mitchell J. Rauh ◽  
Jeanne Nichols ◽  
Anastasia N. Fischer

BACKGROUND: Prior studies have shown that vital signs such as heart rate, blood pressure and body temperature are depressed in patients with an eating disorder who have experienced a negative energy balance for a significant amount of time. More recently, a negative energy balance has been the focus of Relative Energy Deficiency in Sport (RED-S), which links energy availability to the health of multiple body systems in adults in as little as 5 days with a negative energy balance. High rates of disordered eating patterns have been reported in high school athletes. As adolescents grow, the consequences of a negative energy balance can be significant and potentially irreversible. Thus, vital signs may help clinicians quickly evaluate a patient’s energy status or highlight them for further evaluation. PURPOSE: The purpose of this study was to examine energy balance and vital signs in a cohort of adolescents who were seen by a sports dietitian to gain weight or optimize sports performance. METHODS: We evaluated 240 subjects, 83% female, average age 15.0±2.3 years. Heart rate and blood pressure were measured with a dynamometer in a seated position. Body temperature was measured orally. Height and weight were recorded. BMI was then calculated and evaluated by percentile. Energy intake was assessed using a 3-day food recall log. Energy expenditure was calculated using Harris Benedict Equation and combined with estimated exercise energy expenditure. Energy balance was estimated as energy intake minus energy expenditure. RESULTS: Average age was 15.03±2.71. 85% were female. 30% were below the 15th percentile for BMI. There were no differences in BMI percentiles between males and females (p=0.99). The average heart rate was 71.62±13.4 bpm and 19% were below the 10th percentile for heart rate. Average systolic blood pressure was 110±11 mm Hg and average diastolic blood pressure was 62±7 mmHg. Average temperature was 98.1±.4 degrees F. 88%were in a negative energy balance with an average energy deficit of 552±511 calories. There were no statistically significant differences in energy balance between males and females (p=0.08). CONCLUSIONS: A disproportional number of children with low BMI and heart rate percentiles was observed, which may indicate a long-standing energy deficiency. We also found a high proportion of adolescents who experienced a standalone negative energy balance itself or vital signs consistent with a negative energy balance. Additional studies are needed to study the relationships between energy deficit magnitude and duration in adolescents and children.


1999 ◽  
Vol 24 ◽  
pp. 171-175 ◽  
Author(s):  
B. L. Collard ◽  
P. J. Boettcher ◽  
J. C. M. Dekkers ◽  
L. R. Schaeffer ◽  
D. Petitclerc

AbstractData were records of daily food intake and milk production, periodic measures of milk composition and all health and reproductive information from 140 multiparous Holstein cows involved in various experiments at the Agriculture Canada dairy research station in Lennoxville, Quebec. Energy concentrations of the total mixed rations were also available. Daily energy balance was calculated by multiplying the food intake by the concentration of energy in the diet and then subtracting from this quantity the expected (National Research Council) amount of energy required for maintenance (based on parity and body weight) and for milk production (based on yield and concentrations of fat, protein and lactose). Four energy balance traits were defined: (1) average daily energy balance within the first 10 to 100 days of lactation, (2) minimum daily energy balance, (3) days in negative energy balance and (4) total energy deficit during the period of negative energy balance. Health traits were the numbers of incidences of each of the following: (1) all udder problems, (2) mastitis, (3) all locomotive problems, (4) laminitis, (5) digestive problems and (6) reproductive problems. Reproductive traits were the number of days to first observed oestrous and number of inseminations. Phenotypic relationships between energy balance and health were investigated by regressing the energy balance traits on each health trait. Parity and treatment (according to the research trial that the cow was involved with) were also included in the model. Genetic parameters were estimated with restricted maximum likelihood and a model that included effects of parity, treatment and animal. Phenotypically, several significant (P<0.10) relationships between energy balance and health were observed. Cows with longer periods of negative energy balance had increased digestive problems. Cows with greater total energy deficit had more digestive problems and laminitis. Estimates of heritabilities for energy intake and milk energy were 0.42 and 0.12, respectively but estimates of heritability for all energy balance traits were zero. The low estimates for these traits may have been due to (1) low true additive genetic variance, (2) small amount of data, or (3) relatively few genetic ties among cows.


2004 ◽  
Vol 91 (3) ◽  
pp. 411-421 ◽  
Author(s):  
Anne-Helene Tauson ◽  
Mats Forsberg ◽  
André Chwalibog

The role for leptin in food intake regulation in the mink, a polytocous seasonal breeder with altricial young, was investigated in pregnant and lactating dams and data were related to quantitative energy metabolism measurements and plasma concentrations of other important metabolic hormones. A total of nine mink dams were measured in consecutive 1-week balance periods, each including a 22h measurement of heat production by means of indirect calorimetry, and blood was sampled at weekly intervals throughout gestation and during lactation weeks 1–4. Intake of metabolisable energy (ME) was high and energy balance was positive until the first third of true gestation. During mid- and late gestation ME intake decreased (P<0·001) while heat production remained almost constant, resulting in negative energy balance and the loss of body weight. From late gestation until lactation week 4, ME intake increased by 3·5 times, but weight loss continued. Plasma concentrations of leptin were approximately doubled during the last two-thirds of true gestation (P<0·01), demonstrating a clear gestational hyperleptinaemia. Concentrations declined rapidly after parturition and then remained stable. Insulin was independent of leptin, with low concentrations coincident with hyperleptinaemia. Also, concentrations of thyroid hormones declined during gestation, probably reflecting the low food intake. Hyperleptinaemia concomitant with low ME intake, negative energy balance and mobilisation of body reserves suggested an anorexigenic effect of leptin in pregnant mink. This suppression of food intake in late gestation might be permissive for the rapid increase in food intake occurring after parturition.


2009 ◽  
Vol 39 (1) ◽  
pp. 1-13 ◽  
Author(s):  
D. Claire Wathes ◽  
Zhangrui Cheng ◽  
Waliul Chowdhury ◽  
Mark A. Fenwick ◽  
Richard Fitzpatrick ◽  
...  

Most dairy cows suffer uterine microbial contamination postpartum. Persistent endometritis often develops, associated with reduced fertility. We used a model of differential feeding and milking regimes to produce cows in differing negative energy balance status in early lactation (mild or severe, MNEB or SNEB). Blood hematology was assessed preslaughter at 2 wk postpartum. RNA expression in endometrial samples was compared using bovine Affymetrix arrays. Data were mapped using Ingenuity Pathway Analysis. Circulating concentrations of IGF-I remained lower in the SNEB group, whereas blood nonesterified fatty acid and β-hydroxybutyrate concentrations were raised. White blood cell count and lymphocyte number were reduced in SNEB cows. Array analysis of endometrial samples identified 274 differentially expressed probes representing 197 recognized genes between the energy balance groups. The main canonical pathways affected related to immunological and inflammatory disease and connective tissue disorders. Inflammatory response genes with major upregulation in SNEB cows included matrix metalloproteinases, chemokines, cytokines, and calgranulins. Expression of several interferon-inducible genes including ISG20, IFIH1, MX1, and MX2 were also significantly increased in the SNEB cows. These results provide evidence that cows in SNEB were still undergoing an active uterine inflammatory response 2 wk postpartum, whereas MNEB cows had more fully recovered from their energy deficit, with their endometrium reaching a more advanced stage of repair. SNEB may therefore prevent cows from mounting an effective immune response to the microbial challenge experienced after calving, prolonging the time required for uterine recovery and compromising subsequent fertility.


2006 ◽  
Vol 154 (3) ◽  
pp. 397-403 ◽  
Author(s):  
Emanuel R Christ ◽  
Monica Zehnder ◽  
Chris Boesch ◽  
Roman Trepp ◽  
Primus E Mullis ◽  
...  

In view of the growing health problem associated with obesity, clarification of the regulation of energy homeostasis is important. Peripheral signals, such as ghrelin and leptin, have been shown to influence energy homeostasis. Nutrients and physical exercise, in turn, influence hormone levels. Data on the hormonal response to physical exercise (standardized negative energy balance) after high-fat (HF) or low-fat (LF) diet with identical carbohydrate intake are currently not available. The aim of the study was to investigate whether a short-term dietary intervention with HF and LF affects ghrelin and leptin levels and their modulators, GH, insulin and cortisol, before and during aerobic exercise. Eleven healthy, endurance-trained male athletes (Wmax 365 ± 29 W) were investigated twice in a randomized crossover design following two types of diet: 1. LF – 0.5 g fat/kg body weight (BW) per day for 2.5 days; 2. HF – 0.5 g fat/kg BW per day for 1 day followed by 3.5 g fat/kg BW per day for 1.5 days. After a standardized carbohydrate snack in the morning, metabolites and hormones (GH, ghrelin, leptin, insulin and cortisol) were measured before and at regular intervals throughout a 3-h aerobic exercise test on a cycloergometer at 50% of Wmax. Diet did not significantly affect GH and cortisol concentrations during exercise but resulted in a significant increase in ghrelin and decrease in leptin concentrations after LF compared with HF diet (area under the curve (AUC) ghrelin LF vs HF: P < 0.03; AUC leptin LF vs HF: P < 0.02, Wilcoxon rank test). These data suggest that acute negative energy balance induced by exercise elicits a hormonal response with opposite changes of ghrelin and leptin. In addition, the hormonal response is modulated by the preceding intake of fat.


2006 ◽  
Vol 190 (2) ◽  
pp. 545-553 ◽  
Author(s):  
Ruben Nogueiras ◽  
Sulay Tovar ◽  
Sharon E Mitchell ◽  
Perry Barrett ◽  
D Vernon Rayner ◽  
...  

Central neuromedin U (NMU) functions in energy balance, the hypothalamic–pituitary–adrenal axis, LH release and circadian rhythmicity. In rats, high levels of NMU occur in the hypothalamic suprachiasmatic nuclei and the pars tuberalis of the pituitary. NMU expression in the pars tuberalis appears to be downregulated in the Zucker fatty (fa/fa) rat, lacking functional leptin receptors. In contrast, in the dorsomedial (DMH) nuclei of the mouse, NMU expression is higher in the ob/ob mouse, lacking leptin, and is upregulated by fasting. However, leptin appears not to change NMU gene expression in either the mouse DMH or the rat pars tuberalis. Thus, the present study aims to better identify factors influencing central NMU expression in the rat pars tuberalis. Sprague–Dawley rats were fasted and/or challenged with intracerebroventricular leptin or ghrelin and gene expression was measured using real-time reverse transcriptase-PCR and quantitative in situ hybridisation with riboprobes specific for NMU and NMU receptor (NMU-R2). NMU expression in the rat pars tuberalis was elevated by fasting. Ghrelin administration had no effect on the level of NMU expression, but leptin was found to diminish the expression in a concentration- and time-dependent manner. NMU-R2 expression was unchanged in any of the groups measured. These results suggest that NMU expression in rat pars tuberalis is upregulated in states of negative energy balance, and this may be mediated indirectly by changes in leptin levels. These results demonstrate a link between energy balance and NMU expression in the pars tuberalis of the pituitary.


Sign in / Sign up

Export Citation Format

Share Document