Method of localization of agricultural robotic vehicles using AESA established by an UAV complex
This paper considers a relevant method to ensure communication and object location in vast agricultural areas. To solve this problem an operational scenario was proposed, an approach, involving a complex of several UAVs, which establish an AESA; an algorithm for building an optimal path, along which the UAV complex moves, formulas for calculating AESA direction pattern for linear and flat formations of UAV groups, formulas for calculating time, required for terrain scanning with various areas. In such complex on each UAV an antenna with phase shifter is mounted. The paper also considers modeling and comparison of different approaches to motion of an UAV complex for terrain scanning. Due to application of active electronically scanned arrays, the proposed localization method is characterized by high noise immunity, is better shielded from noise, less dependent on weather conditions and appliable at night time. Unlike other methods, it supports wide-range transmission and reception of data. Thereby, application of AESA makes this method robust and practical for localization and communication establishment, whereas the proposed algorithm for building of optimal path, along which the robotic complex moves, enables to reduce time, required for area scanning. Consequently, this method allows achieving the shortest distance that the UAV complex has to cover.