A Virtual Range Finder based on Monocular Vision System in Simultaneous Localization and Mapping

2008 ◽  
Vol 41 (2) ◽  
pp. 2336-2341
Author(s):  
X.Z. Zhang ◽  
A.B. Rad ◽  
Y.K. Wong
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Jianjun Ni ◽  
Tao Gong ◽  
Yafei Gu ◽  
Jinxiu Zhu ◽  
Xinnan Fan

The robot simultaneous localization and mapping (SLAM) is a very important and useful technology in the robotic field. However, the environmental map constructed by the traditional visual SLAM method contains little semantic information, which cannot satisfy the needs of complex applications. The semantic map can deal with this problem efficiently, which has become a research hot spot. This paper proposed an improved deep residual network- (ResNet-) based semantic SLAM method for monocular vision robots. In the proposed approach, an improved image matching algorithm based on feature points is presented, to enhance the anti-interference ability of the algorithm. Then, the robust feature point extraction method is adopted in the front-end module of the SLAM system, which can effectively reduce the probability of camera tracking loss. In addition, the improved key frame insertion method is introduced in the visual SLAM system to enhance the stability of the system during the turning and moving of the robot. Furthermore, an improved ResNet model is proposed to extract the semantic information of the environment to complete the construction of the semantic map of the environment. Finally, various experiments are conducted and the results show that the proposed method is effective.


2011 ◽  
Vol 366 ◽  
pp. 90-94
Author(s):  
Ying Min YI ◽  
Yu Hui

How to identify objects is a hot issue of robot simultaneous localization and mapping (SLAM) with monocular vision. In this paper, an algorithm of wheeled robot’s simultaneous localization and mapping with identification of landmarks based on monocular vision is proposed. In observation steps, identifying landmarks and locating position are performed by image processing and analyzing, which converts vision image projection of wheeled robots and geometrical relations of spatial objects into calculating robots’ relative landmarks distance and angle. The integral algorithm procedure follows the recursive order of prediction, observation, data association, update, mapping to have simultaneous localization and map building. Compared with Active Vision algorithm, Three dimensional vision and stereo vision algorithm, the proposed algorithm is able to identify environmental objects and conduct smooth movement as well.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shuhuan Wen ◽  
Kamal Mohammed Othman ◽  
Ahmad B. Rad ◽  
Yixuan Zhang ◽  
Yongsheng Zhao

We present a SLAM with closed-loop controller method for navigation of NAO humanoid robot from Aldebaran. The method is based on the integration of laser and vision system. The camera is used to recognize the landmarks whereas the laser provides the information for simultaneous localization and mapping (SLAM ). K-means clustering method is implemented to extract data from different objects. In addition, the robot avoids the obstacles by the avoidance function. The closed-loop controller reduces the error between the real position and estimated position. Finally, simulation and experiments show that the proposed method is efficient and reliable for navigation in indoor environments.


Sign in / Sign up

Export Citation Format

Share Document