Generic Droop Correction IIR Filter Design Algorithm

2012 ◽  
Vol 45 (7) ◽  
pp. 7-11
Author(s):  
Sumit Adhikari ◽  
Florian Schupfer ◽  
Christoph Grimm
Author(s):  
Raaed Faleh Hassan

The work presented in this paper illuminates the design and simulation of a recursive or Infinite Impulse Response (IIR) filter. The proposed design algorithm employs the Genetic Algorithm to determine the filter coefficients to satisfy the required performance. The effectiveness of different platforms on filter design and performance has been studied in this paper. Three different platforms are considered to implement and verify the designed filter’s work through simulation. The first platform is the MATLAB/SIMULINK software package used to implement the Biquad form filter. This technique is the basis for the software implementation of the designed IIR filter. The HDL – Cosimulation technique is considered the second one; it inspired to take advantage of the existing tools in SIMULINK to convert the designed filter algorithm to the Very high-speed integrated circuit Hardware Description Language (VHDL) format. The System Generator is employed as the third technique, in which the designed filter is implemented as a hardware structure based on basic unit blocks provided by Xilinx System Generator. This technique facilitates the implementation of the designed filter in the FPGA target device. Simulation results show that the performance of the designed filter is remarkably reliable even with severe noise levels.


2021 ◽  
pp. 1-14
Author(s):  
Sachin Sharma ◽  
Vineet Kumar ◽  
K.P.S. Rana

Generally, the process industry is affected by unwanted fluctuations in control loops arising due to external interference, components with inherent nonlinearities or aggressively tuned controllers. These oscillations lead to production of substandard products and thus affect the overall profitability of a plant. Hence, timely detection of oscillations is desired for ensuring safety and profitability of the plant. In order to achieve this, a control loop oscillation detection and quantification algorithm using Prony method of infinite impulse response (IIR) filter design and deep neural network (DNN) has been presented in this work. Denominator polynomial coefficients of the obtained IIR filter using Prony method were used as the feature vector for DNN. Further, DNN is used to confirm the existence of oscillations in the process control loop data. Furthermore, amplitude and frequency of oscillations are also estimated with the help of cross-correlation values, computed between the original signal and estimated error signal. Experimental results confirm that the presented algorithm is capable of detecting the presence of single or multiple oscillations in the control loop data. The proposed algorithm is also able to estimate the frequency and amplitude of detected oscillations with high accuracy. The Proposed method is also compared with support vector machine (SVM) and empirical mode decomposition (EMD) based approach and it is found that proposed method is faster and more accurate than the later.


2015 ◽  
Vol 28 (4) ◽  
pp. 611-623 ◽  
Author(s):  
Aleksandar Radonjic ◽  
Jelena Certic

In this paper a detailed analysis of an atypical filter structure in MATLAB Filter Design and Analysis (FDA) Tool is presented. As an example of atypical filter structure, the IIR half-band filter with approximately linear phase realized as a parallel connection of two all-pass branches was examined. We compare two types of those filters obtained by two different design algorithms. FDA tool was used for the experiment because different effects of the fixed point implementation can be simulated easily. One of the goals of this paper was to compare results obtained by two different design algorithms. In addition, different realizations of the filter structure based on the parallel connection of two all-pass branches were examined.


Sign in / Sign up

Export Citation Format

Share Document