A seasonal energy-balance climate model for coupling to ice-sheet models
An energy-balance climate model designed for coupling to ice-sheet models is presented. Its independent variables are longitude, latitude and time of the year. The model is based on the vertically integrated equations of conservation of energy and humidity. It can predict the vertically averaged temperature. Since it includes a hydrological cycle, it can also diagnose the net fresh-water flux and hence the annual snow budget at the atmosphere–ice-sheet interface. To this end, the model does not require observed precipitation rates. The computational cost is reduced by using an analytically computed Fourier–Legendre representation of daily insolation. For a highly idealized test-case configuration, two simple sensitivity experiments are carried out.