scholarly journals Analysis of technological schemes for creating a geodetic control at the industrial site

2021 ◽  
Vol 249 ◽  
pp. 366-376
Author(s):  
Georgii Ustavich ◽  
Anatolii Nevolin ◽  
Vladimir Padve ◽  
Valerii Salnikov ◽  
Anton Nikonov

The article highlights the issues of creating with the necessary accuracy a planned control on the industrial site of the engineering structures under construction using satellite technologies and total stations. Depending on the design features of the engineering structures under construction, as well as the technological scheme for the installation of building constructions and industrial equipment, various schemes for creating such control are considered, based on the application of the inverse linear-angular notch. Errors in the source data are one of the main errors that affect the accuracy of geodetic constructions, including the solution of the inverse linear-angular notch. When creating a geodetic network in several stages, the errors of the initial data of the first stage affect the values of the root-mean-square errors (RMS) of determining the position of the second stage points, the errors of which affect the value of the RMS of the position of the third stage points, etc. The reason for their occurrence is the errors of geodetic measurements that occur at each stage of control creating, as well as the stability violation of the points during the production of excavation, construction and installation works. When determining the coordinates of a separate project point at the stage of its removal in-situ by a total station, the entire network is not equalized in the vast majority of cases, and the coordinates of the starting points to which the total station is oriented are considered error-free. As a result, the RMS determination of the points coordinates of the control network or the removal of the design points of the elements of building structures and equipment will also be considered satisfying the requirements, i.e. the measurement accuracy will be artificially overestimated and will not correspond to the actual one obtained. This is due to the fact that the accumulation of errors in the initial data is not taken into account when the number of steps (stages) of control creating increases. The purpose of this work is to analyze the influence of measurement errors and initial data when creating a geodetic control on an industrial site by several stages of its construction based on inverse linear-angular notches and a priori estimation of the accuracy of the determined points position.

2021 ◽  
Vol 41 (I) ◽  
pp. 68-73
Author(s):  
Tar. NALIVAYKO ◽  
◽  
Tet. NALIVAYKO ◽  
D. KAZACHENKO ◽  
◽  
...  

The purpose of improvement of the accepted geodetic decisions concerning the program of geodetic monitoring of highrise buildings of a difficult design taking into account conditions of the increased danger of a construction site Method. Execution of geodetic observations of subsidence of a multi-storey building under the condition of joint use of invar rail and rail of variable length according to the leveling program of the first class. Comparative observations of the displacement of the structure using a high-precision optical theodolite and an electronic total station. Results. Improved methods and geodetic accessories for determining the plan-height deformations of buildings erected in difficult geological conditions. . Scientific novelty. Search and collection of initial information, analysis of normative documentation on the organization of geodetic monitoring of deformation of engineering structures are carried out. Methods for determining the deformations of engineering structures are analyzed. The advantages of class I geodetic observations with the help of accurate optical geodetic instruments over other methods are proved. Comparative studies of the accuracy of a modern electronic total station and a high-precision optical theodolite were performed in the field. The planned and height dynamics of deformation processes of building structures during the construction period and at the initial stage of operation are determined. A comparative analysis of the results of determining the deposition of the pile field by methods of loading piles with hydraulic jacks and the load from the actual mass of the aboveground part of the house. It is established that the largest deformations of the structure occur at the initial stage of construction and gradually fade after its completion. The calculation of the accuracy of geodetic works with the joint use of traditional invar rails and rails of new design. Practical value. The organization and conduct of geodetic works to monitor the deformation processes of multi-storey buildings on the developed technology of precision leveling contributes to the timely establishment of maximum allowable values of deformation, risk prevention, to preserve the safety of residential complexes under difficult geological conditions. A new design of the leveling rail and a leveling technique with the simultaneous use of a standard invar rail and developed by the authors have been developed. Improved method of linear-angular measurements for monitoring the planned deformations of buildings.


2019 ◽  
Vol 8 (3) ◽  
pp. 99-106
Author(s):  
Nedim Tuno ◽  
Admir Mulahusić ◽  
Jusuf Topoljak

For the construction of various civil engineering structures, particular care should be taken in the perspective of geodetic control. Therefore, the design and implementation of the geodetic network deserves special attention. This paper is focused on various aspects of datum definitions for tested micro-triangulation network. It was shown that the geometrical distribution of datum points in a minimally constrained solution has a great impact on the accuracy of the geodetic network. Estimates of the accuracies of individual station y-x coordinates, error circles and error ellipses, obtained by free adjustment, where the datum selection was independent of errors in fixed coordinates, revealed much better quality of control points.


2019 ◽  
Vol 1 (1) ◽  
pp. 130-143
Author(s):  
Anton Nikonov ◽  
Irina Chesheva

The article gives comparative analysis of the creating horizontal and vertical geodetic control network for the purposes of research and building. It is recommended to create geodetic network on the territory up to 1–2 sq km by means of linear-angular measurements with the accuracy of urban fourth-order traverse. After centering the total station and the reflector with an error not more than 1 mm, the minimal network side is 140 m. The precalculation of geodetic control network accuracy with the given confidence level can be performed in CredoDAT. Creation of vertical and horizontal geodetic network should go simultaneously – by means of reciprocal trigonometric leveling of III–IV order accuracy. The height of the total station with use of specific tape measurer Leica can be measured with error of up to 1 mm. The requirements of the acting set of rules «Geodetic works in construction» are not always substantiated and require careful attitude.


2021 ◽  
Vol 15 (1) ◽  
pp. 61-73
Author(s):  
Quang Hien Truong ◽  
◽  
Anh Tu Ngo ◽  
Thi Hien Cu ◽  
◽  
...  

Geodetic control network of Quy Nhon University (QNU) is established based on GNSS technology and electronic total station technology in combination with the middle geometrical elevation surveying method, bench mark of network built with firm concrete installed with a centralized insulator cap. The network consists of 11 points, of which 2 points are traversed from the cadastral point of class I, used as the starting points for the traverse. The network is built based on total station method with 2 turns of forward and backward surveying. The network’s leveling height is measured by the middle geometrical elevation surveying method, ensuring compliance with the procedures and rules of the Ministry of Natural Resources and Environment. The research result includes a system of stable and solid network points, together with the coordinates and the leveling height that are closely adjusted by specialized software, control network diagram. Geodetic control network of the QNU is important in setting up map, general plan, planning, construction and serving for teaching and scientific research of the university.


2018 ◽  
Vol 33 ◽  
pp. 02067 ◽  
Author(s):  
Olga I. Poddaeva ◽  
Anastasia N. Fedosova ◽  
Pavel S. Churin ◽  
Julia S. Gribach

The design of buildings with a height of more than 100 meters is accompanied by strict control in determining the external loads and the subsequent calculation of building structures, which is due to the uniqueness of these facilities. An important factor, the impact of which must be carefully studied at the stage of development of project documentation, is the wind. This work is devoted to the problem of studying the wind impact on buildings above 100 meters. In the article the technique of carrying out of experimental researches of wind influence on high-rise buildings and constructions, developed in the Educational-research-and-production laboratory on aerodynamic and aeroacoustic tests of building designs of NRU MGSU is presented. The publication contains a description of the main stages of the implementation of wind tunnel tests. The article presents the approbation of the methodology, based on the presented algorithm, on the example of a high-rise building under construction. This paper reflects the key requirements that are established at different stages of performing wind impact studies, as well as the results obtained, including the average values of the aerodynamic pressure coefficients, total forces and aerodynamic drag coefficients. Based on the results of the work, conclusions are presented.


2018 ◽  
Vol 24 ◽  
pp. 25-29
Author(s):  
Páll Einarsson ◽  
Haukur Jóhannesson ◽  
Ásta Rut Hjartardóttir

Straddling the boundary between two of the major tectonic plates on Earth, Iceland offers unique conditions for engineering structures that require special attention. Urban areas are rapidly expanding into areas where the bedrock is cut by numerous active fractures and faults. The fissure swarm of the Krísuvík volcanic system runs through the outskirts of Reykjavík and other towns of the metropolitan area. Activity of its fractures mostly occurs during magmatic events along the Reykjanes Peninsula oblique rift on a thousand years timescale. Hazard caused by the fractures is mostly twofold: Relative displacement of the walls of the fracture during magmatic intrusion and small relative displacements during the passage of seismic waves from distant earthquakes may damage structures built across them. The risk of structural damage may most likely be reduced considerably by avoiding building structures across the fractures. We suggest a change in building practice in fractures areas to achieve that.


2016 ◽  
Vol 23 (4) ◽  
pp. 145-160 ◽  
Author(s):  
Jacek Sztubecki ◽  
Adam Bujarkiewicz ◽  
Małgorzata Sztubecka

Abstract The application of geodetic methods to examine structures consists in the determination of their displacements relative to an established geodetic reference datum or in the definition of the geometry of their individual components. Such examinations form a picture of changes happening between specific points in time. Modern measurement technologies used in geodetic engineering enable undertaking more and more challenging measurements with increasing accuracy. The purpose of this article is to present a measurement technique involving a Leica TDRA 6000 total station to measure displacements in engineering structures. The station features a direct drive technology to achieve an accuracy of 0.25 mm in 3-dimensional measurements. Supported by appropriate software, the unit makes a perfect instrument for the monitoring of civil engineering structures. The article presents the results of measurement of static and dynamic displacements in a few engineering structures. The measurements were carried out both in laboratory conditions and on actual, operated civil engineering structures.


Author(s):  
Shahram Jkhsi

Many of the structural defects in the past have happened during the project development process. While a structural engineer must build a safe, economic and functional structure, the durability of the partially constructed structure cannot be ignored at various construction levels. During the building, structural health is a major problem for the industry of construction. Collapses of temporary structures or unfinished permanent structures pose a hazard to safety. Predictive risk analysis methods have been applied over the past decade to evaluate the efficiency of the current existing structural building framework. Identification of risks is aimed at recognizing possible risks that can result in accidents. It describes the types of hazards and random parameters connected with the individual risks and subsequent incidents. The quantifying risk values identified with building structures built according to uniform rules are widely distributed. This study provided importance to a conversation about risk and safety in building structures under construction, to build buildings without damage and destroying, also steps of safety in building structures. The outcome of the project depends on the specifics of the prescription. Building structure safety may lead to big problems if subjected to those loads such as earthquakes and storms. A lot of structural problems happen during construction. Most failures were related to a malfunction in the formwork. This study describes how building systems can carry risks to buildings, as well as resisting the impact of loads that could cause trouble.


Author(s):  
Roman Shults ◽  
Khaini-Kamal Kassymkanova ◽  
Shugyla Burlibayeva ◽  
Daria Skopinova ◽  
Roman Demianenko ◽  
...  

The first stage of any construction is carrying out excavation works. These works are high-priced and timeconsuming. Mostly, for geodetic control of the works, the surveyors are using total stations and GNSS equipment. Last decade, UAV technology was a breakthrough in the geodetic technologies market. One of the possible applications of UAV is the monitoring of excavation works. In the article, the opportunities and accuracy of UAV data while performing the excavation works were studied. The surveying of earth volume in the middle of construction works was made using DJI Phantom 4 UAV. The data were being processed using two photogrammetric software: Agisoft Metashape and PhotoModeler Premium. For comparison, the surveying also was made using a conventional total station. For each data source, the 3D models were generated. The obtained models were compared with each other in CloudCompare software. The comparison revealed the high accuracy of UAV data that satisfies customer’s requirements. For the case of two software comparing, it is better to process data using PhotoModeler. The PhotoModeler software allows performing in-depth data analysis and blunders searching.


2021 ◽  
Vol 227 ◽  
pp. 04005
Author(s):  
Abdusali Suyunov ◽  
Shukhrat Suyunov ◽  
Malika Aminjanova ◽  
Kamola Rakhmatullaeva

To improve the quality of construction and increase the durability of engineering structures under construction, complex geodetic works should be performed, including geodetic observations of deformations of structures. These observations are carried out during the construction of buildings and structures and their operation, mainly before the period of deformation stabilization. In this regard, a reliable statistical definition of deformations close to the limit is necessary, based on the data of geodetic observations. The research helps to improve the definition of deformations of structures using the Fischer’s F-test and the Foster-Stuart test, based on analysis of the measurements of horizontal and vertical monitoring of industrial structures. According to the results, the magnitude of the subsidence plays a more significant role from than its absolute value, thus the value of the deformation intensity is of primary importance in justifying observation periodicity.


Sign in / Sign up

Export Citation Format

Share Document