scholarly journals lpopt: A Rule Optimization Tool for Answer Set Programming

2020 ◽  
Vol 177 (3-4) ◽  
pp. 275-296
Author(s):  
Manuel Bichler ◽  
Michael Morak ◽  
Stefan Woltran

State-of-the-art answer set programming (ASP) solvers rely on a program called a grounder to convert non-ground programs containing variables into variable-free, propositional programs. The size of this grounding depends heavily on the size of the non-ground rules, and thus, reducing the size of such rules is a promising approach to improve solving performance. To this end, in this paper we announce lpopt, a tool that decomposes large logic programming rules into smaller rules that are easier to handle for current solvers. The tool is specifically tailored to handle the standard syntax of the ASP language (ASP-Core) and makes it easier for users to write efficient and intuitive ASP programs, which would otherwise often require significant handtuning by expert ASP engineers. It is based on an idea proposed by Morak and Woltran (2012) that we extend significantly in order to handle the full ASP syntax, including complex constructs like aggregates, weak constraints, and arithmetic expressions. We present the algorithm, the theoretical foundations on how to treat these constructs, as well as an experimental evaluation showing the viability of our approach.

2019 ◽  
Vol 20 (2) ◽  
pp. 176-204 ◽  
Author(s):  
MARTIN GEBSER ◽  
MARCO MARATEA ◽  
FRANCESCO RICCA

AbstractAnswer Set Programming (ASP) is a prominent knowledge representation language with roots in logic programming and non-monotonic reasoning. Biennial ASP competitions are organized in order to furnish challenging benchmark collections and assess the advancement of the state of the art in ASP solving. In this paper, we report on the design and results of the Seventh ASP Competition, jointly organized by the University of Calabria (Italy), the University of Genova (Italy), and the University of Potsdam (Germany), in affiliation with the 14th International Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR 2017).


Author(s):  
Tobias Kaminski ◽  
Thomas Eiter ◽  
Katsumi Inoue

Meta-Interpretive Learning (MIL) is a recent approach for Inductive Logic Programming (ILP) implemented in Prolog. Alternatively, MIL-problems can be solved by using Answer Set Programming (ASP), which may result in performance gains due to efficient conflict propagation. However, a straightforward MIL-encoding results in a huge size of the ground program and search space. To address these challenges, we encode MIL in the HEX-extension of ASP, which mitigates grounding issues, and we develop novel pruning techniques.


2018 ◽  
Vol 18 (3-4) ◽  
pp. 571-588 ◽  
Author(s):  
TOBIAS KAMINSKI ◽  
THOMAS EITER ◽  
KATSUMI INOUE

AbstractMeta-Interpretive Learning (MIL) learns logic programs from examples by instantiating meta-rules, which is implemented by the Metagol system based on Prolog. Viewing MIL-problems as combinatorial search problems, they can alternatively be solved by employing Answer Set Programming (ASP), which may result in performance gains as a result of efficient conflict propagation. However, a straightforward ASP-encoding of MIL results in a huge search space due to a lack of procedural bias and the need for grounding. To address these challenging issues, we encode MIL in the HEX-formalism, which is an extension of ASP that allows us to outsource the background knowledge, and we restrict the search space to compensate for a procedural bias in ASP. This way, the import of constants from the background knowledge can for a given type of meta-rules be limited to relevant ones. Moreover, by abstracting from term manipulations in the encoding and by exploiting the HEX interface mechanism, the import of such constants can be entirely avoided in order to mitigate the grounding bottleneck. An experimental evaluation shows promising results.


2009 ◽  
pp. 2261-2267
Author(s):  
Fernando Zacarías Flores ◽  
Dionicio Zacarías Flores ◽  
Rosalba Cuapa Canto ◽  
Luis Miguel Guzmán Muñoz

Updates, is a central issue in relational databases and knowledge databases. In the last years, it has been well studied in the non-monotonic reasoning paradigm. Several semantics for logic program updates have been proposed (Brewka, Dix, & Knonolige 1997), (De Schreye, Hermenegildo, & Pereira, 1999) (Katsumo & Mendelzon, 1991). However, recently a set of proposals has been characterized to propose mechanisms of updates based on logic and logic programming. All these mechanisms are built on semantics based on structural properties (Eiter, Fink, Sabattini & Thompits, 2000) (Leite, 2002) (Banti, Alferes & Brogi, 2003) (Zacarias, 2005). Furthermore, all these semantic ones coincide in considering the AGM proposal as the standard model in the update theory, for their wealth in properties. The AGM approach, introduced in (Alchourron, Gardenfors & Makinson, 1985) is the dominating paradigm in the area, but in the context of monotonic logic. All these proposals analyze and reinterpret the AGM postulates under the Answer Set Programming (ASP) such as (Eiter, Fink, Sabattini & Thompits, 2000). However, the majority of the adapted AGM and update postulates are violated by update programs, as shown in(De Schreye, Hermenegildo, & Pereira, 1999).


2020 ◽  
Vol 20 (5) ◽  
pp. 783-798
Author(s):  
PEDRO CABALAR ◽  
MARTÍN DIÉGUEZ ◽  
TORSTEN SCHAUB ◽  
ANNA SCHUHMANN

AbstractWe elaborate upon the theoretical foundations of a metric temporal extension of Answer Set Programming. In analogy to previous extensions of ASP with constructs from Linear Temporal and Dynamic Logic, we accomplish this in the setting of the logic of Here-and-There and its non-monotonic extension, called Equilibrium Logic. More precisely, we develop our logic on the same semantic underpinnings as its predecessors and thus use a simple time domain of bounded time steps. This allows us to compare all variants in a uniform framework and ultimately combine them in a common implementation.


2018 ◽  
Vol 19 (2) ◽  
pp. 262-289 ◽  
Author(s):  
ELIAS MARCOPOULOS ◽  
YUANLIN ZHANG

AbstractRecent progress in logic programming (e.g. the development of the answer set programming (ASP) paradigm) has made it possible to teach it to general undergraduate and even middle/high school students. Given the limited exposure of these students to computer science, the complexity of downloading, installing, and using tools for writing logic programs could be a major barrier for logic programming to reach a much wider audience. We developed onlineSPARC, an online ASP environment with a self-contained file system and a simple interface. It allows users to type/edit logic programs and perform several tasks over programs, including asking a query to a program, getting the answer sets of a program, and producing a drawing/animation based on the answer sets of a program.


2020 ◽  
Vol 20 (5) ◽  
pp. 609-624
Author(s):  
ANTONIUS WEINZIERL ◽  
RICHARD TAUPE ◽  
GERHARD FRIEDRICH

AbstractAnswer-Set Programming (ASP) is a powerful and expressive knowledge representation paradigm with a significant number of applications in logic-based AI. The traditional ground-and-solve approach, however, requires ASP programs to be grounded upfront and thus suffers from the so-called grounding bottleneck (i.e., ASP programs easily exhaust all available memory and thus become unsolvable). As a remedy, lazy-grounding ASP solvers have been developed, but many state-of-the-art techniques for grounded ASP solving have not been available to them yet. In this work we present, for the first time, adaptions to the lazy-grounding setting for many important techniques, like restarts, phase saving, domain-independent heuristics, and learned-clause deletion. Furthermore, we investigate their effects and in general observe a large improvement in solving capabilities and also uncover negative effects in certain cases, indicating the need for portfolio solving as known from other solvers.


2015 ◽  
Vol 15 (4-5) ◽  
pp. 511-525 ◽  
Author(s):  
MARK LAW ◽  
ALESSANDRA RUSSO ◽  
KRYSIA BRODA

AbstractThis paper contributes to the area of inductive logic programming by presenting a new learning framework that allows the learning of weak constraints in Answer Set Programming (ASP). The framework, calledLearning from Ordered Answer Sets, generalises our previous work on learning ASP programs without weak constraints, by considering a new notion of examples asorderedpairs of partial answer sets that exemplify which answer sets of a learned hypothesis (together with a given background knowledge) arepreferredto others. In this new learning task inductive solutions are searched within a hypothesis space of normal rules, choice rules, and hard and weak constraints. We propose a new algorithm, ILASP2, which is sound and complete with respect to our new learning framework. We investigate its applicability to learning preferences in an interview scheduling problem and also demonstrate that when restricted to the task of learning ASP programs without weak constraints, ILASP2 can be much more efficient than our previously proposed system.


Author(s):  
WOLFGANG FABER ◽  
MICHAEL MORAK ◽  
LUKÁŠ CHRPA

Abstract In the context of planning and reasoning about actions and change, we call an action reversible when its effects can be reverted by applying other actions, returning to the original state. Renewed interest in this area has led to several results in the context of the PDDL language, widely used for describing planning tasks. In this paper, we propose several solutions to the computational problem of deciding the reversibility of an action. In particular, we leverage an existing translation from PDDL to Answer Set Programming (ASP), and then use several different encodings to tackle the problem of action reversibility for the STRIPS fragment of PDDL. For these, we use ASP, as well as Epistemic Logic Programming (ELP), an extension of ASP with epistemic operators, and compare and contrast their strengths and weaknesses.


10.29007/ngm2 ◽  
2018 ◽  
Author(s):  
Gopal Gupta ◽  
Elmer Salazar ◽  
Kyle Marple ◽  
Zhuo Chen ◽  
Farhad Shakerin

Answer Set Programming (ASP) has emerged as a successful paradigm for developing intelligent applications. ASP is based on adding negation as failure to logic programming under the stable model semantics regime. ASP allows for sophisticated reasoning mechanisms that are employed by humans to be modeled elegantly. We argue that being able to model common sense reasoning as used by humans is critical for success of automated reasoning. We also argue that extending answer programming systems to general predicates is critical to realizing the full power of ASP. Goal-directed predicate ASP systems are needed to make the ASP technology practical for building large, scalable knowledge-based applications.


Sign in / Sign up

Export Citation Format

Share Document