Mining Clinical Process from Hospital Information System: A Granular Computing Approach
Data mining methods in medicine is a very important tool for developing automated decision support systems. However, since information granularity of disease codes used in hospital information system is coarser than that of real clinical definitions of diseases and their treatment, automated data curation is needed to extract knowledge useful for clinical decision making. This paper proposes automated construction of clinical process plan from nursing order histories and discharge summaries stored in hospital information system with curation of disease codes as follows. First, the system applies EM clustering to estimate subgrouping of a given disease code from clinical cases. Second, it decomposes the original datasets into datasets of subgroups by using granular homogenization. Thirdly, clinical pathway generation method is applied to the datasets. Fourthly, classification models of subgroups are constructed by using the analysis of discharge summaries to capture the meaning of each subgroup. Finally, the clinical pathway of a given disease code is output as the combination of the classifiers of subgroups and the the pathways of the corresponding subgroups. The proposed method was evaluated on the datasets extracted hospital information system in Shimane University Hosptial. The obtained results show that more plausible clinical pathways were obtained, compared with previously introduced methods.