Interval arithmetic to support effective indoor positioning of software agents

2020 ◽  
Vol 14 (1) ◽  
pp. 59-73
Author(s):  
Stefania Monica ◽  
Federico Bergenti

 The provision of advanced location-based services in indoor environments is based on the possibility of estimating the positions of mobile devices with sufficient accuracy and robustness. An algorithm to allow a software agent hosted on a mobile device to estimate the position of its device in a known indoor environment is proposed under the ordinary assumption that fixed beacons are installed in the environment at known locations. Rather than making use of geometric considerations to estimate the position of the device, the proposed algorithm first transforms the localization problem into a related optimization problem, which is then solved by means of interval arithmetic to provide the agent with accurate and robust position estimates. The adopted approach solves a major problem that severely limits the accuracy of the position estimates that ordinary geometric algorithms provide when the beacons are positioned to maximize line-of-sight coverage. Experimental results confirm that the proposed algorithm provides position estimates that are independent of the positions of the beacons, and they show that the algorithm outperforms a well-known geometric algorithm.

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 65 ◽  
Author(s):  
Stefania Monica ◽  
Federico Bergenti

The study of techniques to estimate the position of mobile devices with a high level of accuracy and robustness is essential to provide advanced location based services in indoor environments. An algorithm to enable mobile devices to estimate their positions in known indoor environments is proposed in this paper under the assumption that fixed anchor nodes are available at known locations. The proposed algorithm is specifically designed to be executed on the mobile device whose position is under investigation, and it allows the device to estimate its position within the environment by actively measuring distance estimates from the anchor nodes. In order to reduce the impact of the errors caused by the arrangement of the anchor nodes in the environment, the proposed algorithm first transforms the localization problem into an optimization problem, and then, it solves the derived optimization problem using techniques inspired by nonlinear programming. Experimental results obtained using ultra-wide band signaling are presented to assess the performance of the algorithm and to compare it with reference alternatives. The presented experimental results confirm that the proposed algorithm provides an increased level of accuracy and robustness with respect to two reference alternatives, regardless of the position of the anchor nodes.


2020 ◽  
Vol 73 (5) ◽  
pp. 1106-1128 ◽  
Author(s):  
Yue Yu ◽  
Ruizhi Chen ◽  
Zuoya Liu ◽  
Guangyi Guo ◽  
Feng Ye ◽  
...  

Indoor positioning systems have received increasing attention for supporting location-based services in indoor environments. Wi-Fi based indoor localisation has become attractive due to its extensive distribution and low cost properties. IEEE 802.11-2016 now includes a Wi-Fi Fine Time Measurement (FTM) protocol which can be used for Wi-Fi ranging between intelligent terminal and Wi-Fi access point. This paper introduces a framework of Wi-Fi FTM data acquisition and processing that can be used for indoor localisation. We analyse the main factors that affect the accuracy of Wi-Fi ranging and propose a calibration, filtering and modelling algorithm that can effectively reduce the ranging error caused by clock deviation, non-line-of-sight (NLOS) and multipath propagation. Experimental results show that the proposed calibration and filtering method is able to achieve metre-level ranging accuracy in case of line-of-sight by using large bandwidth. Estimation results also show that the proposed Wi-Fi ranging model provides an accurate ranging performance in NLOS and multipath contained indoor environment; the final positioning error is less than 2·2 m with a stable output frequency of 3 Hz.


Author(s):  
Laurentiu Predescu ◽  
Daniel Dunea

Optical monitors have proven their versatility into the studies of air quality in the workplace and indoor environments. The current study aimed to perform a screening of the indoor environment regarding the presence of various fractions of particulate matter (PM) and the specific thermal microclimate in a classroom occupied with students in March 2019 (before COVID-19 pandemic) and in March 2021 (during pandemic) at Valahia University Campus, Targoviste, Romania. The objectives were to assess the potential exposure of students and academic personnel to PM and to observe the performances of various sensors and monitors (particle counter, PM monitors, and indoor microclimate sensors). PM1 ranged between 29 and 41 μg m−3 and PM10 ranged between 30 and 42 μg m−3. It was observed that the particles belonged mostly to fine and submicrometric fractions in acceptable thermal environments according to the PPD and PMV indices. The particle counter recorded preponderantly 0.3, 0.5, and 1.0 micron categories. The average acute dose rate was estimated as 6.58 × 10−4 mg/kg-day (CV = 14.3%) for the 20–40 years range. Wearing masks may influence the indoor microclimate and PM levels but additional experiments should be performed at a finer scale.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 574
Author(s):  
Chendong Xu ◽  
Weigang Wang ◽  
Yunwei Zhang ◽  
Jie Qin ◽  
Shujuan Yu ◽  
...  

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.


Author(s):  
Weiyan Chen ◽  
Fusang Zhang ◽  
Tao Gu ◽  
Kexing Zhou ◽  
Zixuan Huo ◽  
...  

Floor plan construction has been one of the key techniques in many important applications such as indoor navigation, location-based services, and emergency rescue. Existing floor plan construction methods require expensive dedicated hardware (e.g., Lidar or depth camera), and may not work in low-visibility environments (e.g., smoke, fog or dust). In this paper, we develop a low-cost Ultra Wideband (UWB)-based system (named UWBMap) that is mounted on a mobile robot platform to construct floor plan through smoke. UWBMap leverages on low-cost and off-the-shelf UWB radar, and it is able to construct an indoor map with an accuracy comparable to Lidar (i.e., the state-of-the-art). The underpinning technique is to take advantage of the mobility of radar to form virtual antennas and gather spatial information of a target. UWBMap also eliminates both robot motion noise and environmental noise to enhance weak reflection from small objects for the robust construction process. In addition, we overcome the limited view of single radar by combining multi-view from multiple radars. Extensive experiments in different indoor environments show that UWBMap achieves a map construction with a median error of 11 cm and a 90-percentile error of 26 cm, and it operates effectively in indoor scenarios with glass wall and dense smoke.


2019 ◽  
Vol 13 (1) ◽  
pp. 47-61
Author(s):  
Guenther Retscher ◽  
Jonathan Kleine ◽  
Lisa Whitemore

Abstract More and more sensors and receivers are found nowadays in smartphones which can enable and improve positioning for Location-based Services and other navigation applications. Apart from inertial sensors, such as accelerometers, gyroscope and magnetometer, receivers for Wireless Fidelity (Wi-Fi) and GNSS signals can be employed for positioning of a mobile user. In this study, three trilateration methods for Wi-Fi positioning are investigated whereby the influence of the derivation of the relationship between the received signal strength (RSS) and the range to an Access Points (AP) are analyzed. The first approach is a straightforward resection for point determination and the second is based on the calculation of the center of gravity in a triangle of APs while weighting the received RSS. In the third method a differential approach is employed where as in Differential GNSS (DGNSS) corrections are derived and applied to the raw RSS measurements. In this Differential Wi-Fi (DWi-Fi) method, reference stations realized by low-cost Raspberry Pi units are used to model temporal RSS variations. In the experiments in this study two different indoor environments are used, one in a laboratory and the second in the entrance of an office building. The results of the second and third approach show position deviations from the ground truth of around 2 m in dependence of the geometrical point location. Furthermore, the transition between GNSS positioning outdoors and Wi-Fi localization indoors in the entrance area of the building is studied.


2014 ◽  
Vol 989-994 ◽  
pp. 2232-2236 ◽  
Author(s):  
Jia Zhi Dong ◽  
Yu Wen Wang ◽  
Feng Wei ◽  
Jiang Yu

Currently, there is an urgent need for indoor positioning technology. Considering the complexity of indoor environment, this paper proposes a new positioning algorithm (N-CHAN) via the analysis of the error of arrival time positioning (TOA) and the channels of S-V model. It overcomes an obvious shortcoming that the accuracy of traditional CHAN algorithm effected by no-line-of-sight (NLOS). Finally, though MATLAB software simulation, we prove that N-CHAN’s superior performance in NLOS in the S-V channel model, which has a positioning accuracy of centimeter-level and can effectively eliminate the influence of NLOS error on positioning accuracy. Moreover, the N-CHAN can effectively improve the positioning accuracy of the system, especially in the conditions of larger NLOS error.


2021 ◽  
Author(s):  
Paolo Carbone ◽  
Guido De Angelis ◽  
Valter Pasku ◽  
Alessio De Angelis ◽  
Marco Dionigi ◽  
...  

<div><div><div><p>This paper describes the design and realization of a Magnetic Indoor Positioning System. The system is entirely realized using off-the-shelf components and is based on inductive coupling between resonating coils. Both system-level architecture and realization details are described along with experimental results. The realized system exhibits a maximum positioning error of less than 10 cm in an indoor environment over a 3×3 m2 area. Extensive experiments in larger areas, in non-line-of-sight conditions, and in unfavorable geometric configurations, show sub-meter accuracy, thus validating the robustness of the system with respect to other existing solutions.</p></div></div></div>


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Jiafeng Shi ◽  
Jie Shen ◽  
Zdeněk Stachoň ◽  
Yawei Chen

<p><strong>Abstract.</strong> With the increasing number of large buildings and more frequent indoor activities, indoor location-based service has expanded. Due to the complicated internal passages of large public buildings and the three-dimensional interlacing, it is difficult for users to quickly reach the destination, the demand of indoor paths visualization increases. Isikdag (2013), Zhang Shaoping (2017), Huang Kejia (2018) provided navigation services for users based on path planning algorithm. In terms of indoor path visualization, Nossum (2011) proposed a “Tubes” map design method, which superimposed the channel information of different floors on the same plane by simplifying the indoor corridor and the room. Lorenz et al (2013) focused on map perspective (2D/3D) and landmarks, developed and investigated cartographic methods for effective route guidance in indoor environments. Holscher et al (2007) emphasized using the landmark objects at the important decision points of the route in indoor map design. The existing studies mainly focused on two-dimensional plane to visualize the indoor path, lacking the analysis of three-dimensional connectivity in indoor space, which makes the intuitiveness and interactivity of path visualization greatly compromised. Therefore, it is difficult to satisfy the wayfinding requirements of the indoor multi-layer continuous space. In order to solve this problem, this paper aims to study the characteristics of the indoor environment and propose a path visualization method. The following questions are addressed in this study: 1) What are the key characteristics of the indoor environment compared to the outdoor space? 2) How to visualize the indoor paths to satisfy the users’ wayfinding needs?</p>


Author(s):  
Shih-Hau Fang

Indoor positioning systems have received increasing attention for supporting location-based services in indoor environments. Received signal strength (RSS), mostly utilized in Wi-Fi fingerprinting systems, is known to be unreliable due to two reasons: orientation mismatch and variations in hardware. This chapter introduces an approach based on histogram equalization to compensate for orientation mismatch in robust Wi-Fi localization. The proposed method involves converting the temporal-spatial radio signal strength into a reference function (i.e., equalizing the histogram). This chapter also introduces an enhanced positioning feature, which is called delta-fused principal strength, to enhance the robustness of Wi-Fi localization against the problem of heterogeneous hardware. This algorithm computes the pairwise delta RSS and then integrates with RSS using principal component analysis. The proposed methods effectively and efficiently improve the robustness of location estimation in the presence of mismatch orientation and hardware variations, respectively.


Sign in / Sign up

Export Citation Format

Share Document