Tomato pest classification using deep convolutional neural network with transfer learning, fine tuning and scratch learning

2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.

2020 ◽  
Vol 10 (5) ◽  
pp. 1040-1048 ◽  
Author(s):  
Xianwei Jiang ◽  
Liang Chang ◽  
Yu-Dong Zhang

More than 35 million patients are suffering from Alzheimer’s disease and this number is growing, which puts a heavy burden on countries around the world. Early detection is of benefit, in which the deep learning can aid AD identification effectively and gain ideal results. A novel eight-layer convolutional neural network with batch normalization and dropout techniques for classification of Alzheimer’s disease was proposed. After data augmentation, the training dataset contained 7399 AD patient and 7399 HC subjects. Our eight-layer CNN-BN-DO-DA method yielded a sensitivity of 97.77%, a specificity of 97.76%, a precision of 97.79%, an accuracy of 97.76%, a F1 of 97.76%, and a MCC of 95.56% on the test set, which achieved the best performance in seven state-of-the-art approaches. The results strongly demonstrate that this method can effectively assist the clinical diagnosis of Alzheimer’s disease.


2020 ◽  
Vol 6 (11) ◽  
pp. 127
Author(s):  
Ibrahem Kandel ◽  
Mauro Castelli ◽  
Aleš Popovič

The classification of the musculoskeletal images can be very challenging, mostly when it is being done in the emergency room, where a decision must be made rapidly. The computer vision domain has gained increasing attention in recent years, due to its achievements in image classification. The convolutional neural network (CNN) is one of the latest computer vision algorithms that achieved state-of-the-art results. A CNN requires an enormous number of images to be adequately trained, and these are always scarce in the medical field. Transfer learning is a technique that is being used to train the CNN by using fewer images. In this paper, we study the appropriate method to classify musculoskeletal images by transfer learning and by training from scratch. We applied six state-of-the-art architectures and compared their performance with transfer learning and with a network trained from scratch. From our results, transfer learning did increase the model performance significantly, and, additionally, it made the model less prone to overfitting.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Tulika Kakati ◽  
Dhruba K. Bhattacharyya ◽  
Jugal K. Kalita ◽  
Trina M. Norden-Krichmar

Abstract Background A limitation of traditional differential expression analysis on small datasets involves the possibility of false positives and false negatives due to sample variation. Considering the recent advances in deep learning (DL) based models, we wanted to expand the state-of-the-art in disease biomarker prediction from RNA-seq data using DL. However, application of DL to RNA-seq data is challenging due to absence of appropriate labels and smaller sample size as compared to number of genes. Deep learning coupled with transfer learning can improve prediction performance on novel data by incorporating patterns learned from other related data. With the emergence of new disease datasets, biomarker prediction would be facilitated by having a generalized model that can transfer the knowledge of trained feature maps to the new dataset. To the best of our knowledge, there is no Convolutional Neural Network (CNN)-based model coupled with transfer learning to predict the significant upregulating (UR) and downregulating (DR) genes from both trained and untrained datasets. Results We implemented a CNN model, DEGnext, to predict UR and DR genes from gene expression data obtained from The Cancer Genome Atlas database. DEGnext uses biologically validated data along with logarithmic fold change values to classify differentially expressed genes (DEGs) as UR and DR genes. We applied transfer learning to our model to leverage the knowledge of trained feature maps to untrained cancer datasets. DEGnext’s results were competitive (ROC scores between 88 and 99$$\%$$ % ) with those of five traditional machine learning methods: Decision Tree, K-Nearest Neighbors, Random Forest, Support Vector Machine, and XGBoost. DEGnext was robust and effective in terms of transferring learned feature maps to facilitate classification of unseen datasets. Additionally, we validated that the predicted DEGs from DEGnext were mapped to significant Gene Ontology terms and pathways related to cancer. Conclusions DEGnext can classify DEGs into UR and DR genes from RNA-seq cancer datasets with high performance. This type of analysis, using biologically relevant fine-tuning data, may aid in the exploration of potential biomarkers and can be adapted for other disease datasets.


Sign in / Sign up

Export Citation Format

Share Document