Electromagnetohydrodynamic peristaltic flow of a couple stress nanofluid through a vertical annulus in the presence of Hall currents and thermal radiation
This paper investigates the electric properties of gold nanoparticles mixed with a convection dielectric couple stress fluid inside a vertical cylindrical tube with moving endoscope in the presence of Hall currents and thermal radiation. Under the long wavelength approximation and the use of appropriate conversion relationships between fixed and moving frame coordinates, the exact solutions have been evaluated for temperature distribution, gold nanoparticles concentration, electrical potential function and nanofluid pressure, while analytical solution is found for the axial velocity using the homotopy analysis method. The results show that the presence of the electric field enhances the effects of Brownian motion parameter, thermophoresis parameter, radiation parameter, Hall currents and wave amplitude ratio on the axial nanofluid velocity, while it was found that its presence reduces the effects of couple stress parameter, thermophoresis diffusion constant and Brownian diffusion constant.