diffusion constant
Recently Published Documents


TOTAL DOCUMENTS

659
(FIVE YEARS 90)

H-INDEX

49
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Samuele Giannini ◽  
Wei-Tao Peng ◽  
Lorenzo Cupellini ◽  
Daniele Padula ◽  
Antoine Carof ◽  
...  

Abstract Designing molecular materials with very large exciton diffusion lengths would remove some of the intrinsic limitations of present-day organic optoelectronic devices. Yet, the nature of excitons in these materials is still not sufficiently well understood. Here we present Frenkel exciton surface hopping, a highly efficient method to propagate excitons through truly nano-scale materials by solving the time-dependent Schrödinger equation coupled to nuclear motion. We find a clear correlation between diffusion constant and quantum delocalization of the exciton. In materials featuring some of the highest diffusion lengths to date, e.g. the non-fullerene acceptor Y6, the exciton propagates via a transient delocalization mechanism, reminiscent to what was recently proposed for charge transport. Yet, the extent of delocalization is rather modest, even in Y6, and found to be limited by the relatively large exciton reorganization energy. On this basis we chart out a path for rationally improving exciton transport in organic optoelectronic materials.


2022 ◽  
Author(s):  
Daniel P Melters ◽  
Keir C Neuman ◽  
Tatini Rakshit ◽  
Yamini Dalal

Chromatin accessibility is modulated in a variety of ways, both to create open and closed chromatin states which are critical for eukaryotic gene regulation. At the mechanistic single molecule level, how accessibility is regulated remains a fundamental question in the field. Here, we use single molecule tracking by high-speed atomic force microscopy to investigate this question using chromatin arrays and extend our findings into the nucleus. By high-speed atomic force microscopy, we tracked chromatin dynamics in real time and observed that the essential kinetochore protein CENP-C reduces the diffusion constant of CENP-A nucleosomes and the linker H1.5 protein restricts H3 nucleosome mobility. We subsequently interrogated how CENP-C modulates CENP-A chromatin dynamics in vivo. Overexpressing CENP-C resulted in reduced centromeric transcription and impaired loading of new CENP-A molecules. These data suggest a model in which inner kinetochore proteins are critically involved in modulating chromatin accessibility and consequently, noncoding transcription at human centromeres.


2021 ◽  
Author(s):  
Jinggang Lan ◽  
David Wilkins ◽  
Vladimir Rybkin ◽  
Marcella Iannuzzi ◽  
Juerg Hutter

We report the static and dynamical properties of liquid water at the level of second-order Møller-Plesset per- perturbation theory (MP2) with classical and quantum nuclear dynamics using a neural network potential. We examined the temperature-dependent radial distribution functions, diffusion, and vibrational dynamics. MP2 theory predicts over-structured liquid water as well as a lower diffusion coefficient at ambient conditions compared to experiments, which may be attributed to the incomplete basis set. A better agreement with experimental structural properties and the diffusion constant are observed at an elevated temperature of 340 K from our simulations. Although the high-level electronic structure calculations are expensive, training a neural network potential requires only a few thousand frames. The approach is promising as it involves modest human effort and is straightforwardly extensible to other simple liquids.


Author(s):  
M.H. Haroun

This paper investigates the electric properties of gold nanoparticles mixed with a convection dielectric couple stress fluid inside a vertical cylindrical tube with moving endoscope in the presence of Hall currents and thermal radiation. Under the long wavelength approximation and the use of appropriate conversion relationships between fixed and moving frame coordinates, the exact solutions have been evaluated for temperature distribution, gold nanoparticles concentration, electrical potential function and nanofluid pressure, while analytical solution is found for the axial velocity using the homotopy analysis method. The results show that the presence of the electric field enhances the effects of Brownian motion parameter, thermophoresis parameter, radiation parameter, Hall currents and wave amplitude ratio on the axial nanofluid velocity, while it was found that its presence reduces the effects of couple stress parameter, thermophoresis diffusion constant and Brownian diffusion constant.


2021 ◽  
Vol 9 ◽  
Author(s):  
Antonio Cobarrubia ◽  
Jarod Tall ◽  
Austin Crispin-Smith ◽  
Antoni Luque

Mucus is a complex fluid that coats multiple organs in animals. Various physicochemical properties can alter the diffusion of microscopic particles in mucus, impacting drug delivery, virus infection, and disease development. The simultaneous effect of these physicochemical properties in particle diffusion, however, remains elusive. Here, we analyzed 106 published experiments to identify the most dominant factors controlling particle diffusion in mucus. The effective diffusion—defined using a one-second sampling time window across experiments—spanned seven orders of magnitude, from 10–5 to 102 μm2/s. Univariate and multivariate statistical analyses identified the anomalous exponent (the logarithmic slope of the mean-squared displacement) as the strongest predictor of effective diffusion, revealing an exponential relationship that explained 89% of the variance. A theoretical scaling analysis revealed that a stronger correlation of the anomalous exponent over the generalized diffusion constant occurs for sampling times two orders of magnitude larger than the characteristic molecular (or local) displacement time. This result predicts that at these timescales, the molecular properties controlling the anomalous exponent, like particle–mucus unbinding times or the particle to mesh size ratio, would be the most relevant physicochemical factors involved in passive microrheology of particles in mucus. Our findings contrast with the fact that only one-third of the studies measured the anomalous exponent, and most experiments did not report the associated molecular properties predicted to dominate the motion of particles in mucus. The theoretical foundation of our work can be extrapolated to other systems, providing a guide to identify dominant molecular mechanisms regulating the mobility of particles in mucus and other polymeric fluids.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tomoya Kusama ◽  
Shuzo Hirata

The suppression of thermally driven triplet deactivation is crucial for efficient persistent room-temperature phosphorescence (pRTP). However, the mechanism by which triplet deactivation occurs in metal-free molecular solids at room temperature (RT) remains unclear. Herein, we report a large pRTP intensity change in a molecular guest that depended on the reversible amorphous–crystal phase change in the molecular host, and we confirm the large contribution made by the rigidity of the host in suppressing intermolecular triplet quenching in the guest. (S)-(−)-2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl ((S)-BINAP) was doped as a guest into a highly purified (S)-bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl ((S)-H8-BINAP) host. It was possible to reversibly form the amorphous and crystalline states of the solid by cooling to RT from various temperatures. The RTP yield (Φp) originating from the (S)-BINAP was 6.7% in the crystalline state of the (S)-H8-BINAP host, whereas it decreased to 0.31% in the amorphous state. Arrhenius plots showing the rate of nonradiative deactivation from the lowest triplet excited state (T1) of the amorphous and crystalline solids indicated that the large difference in Φp between the crystalline and amorphous states was mostly due to the discrepancy in the magnitude of quenching of intermolecular triplet energy transfer from the (S)-BINAP guest to the (S)-H8-BINAP host. Controlled analyses of the T1 energy of the guest and host, and of the reorganization energy of the intermolecular triplet energy transfer from the guest to the host, confirmed that the large difference in intermolecular triplet quenching was due to the discrepancy in the magnitude of the diffusion constant of the (S)-H8-BINAP host between its amorphous and crystalline states. Quantification of both the T1 energy and the diffusion constant of molecules used in solid materials is crucial for a meaningful discussion of the intermolecular triplet deactivation of various metal-free solid materials.


2021 ◽  
Author(s):  
Tanmay Abhay Kulkarni ◽  
Debabrata Mukhopadhyay ◽  
Santanu Bhattacharya

Abstract BackgroundEfficacy of targeted drug delivery using nanoparticles relies on several factors including the uptake mechanisms such as phagocytosis, macropinocytosis, micropinocytosis and receptor mediated endocytosis. These mechanisms have been studied with respect to the alteration in signaling mechanisms, cellular morphology, and linear nanomechanical properties (NMPs). Commonly employed classical contact mechanics models to address cellular NMPs fail to address mesh like structure consisting of bilayer lipids and proteins of cell membrane. To overcome this technical challenge, we employed poroelastic model which accounts for the biphasic nature of cells including their porous behavior exhibiting both solid like (fluid storage) and liquid like (fluid dissipate) behavior ResultsIn this study, we employed atomic force microscopy to monitor the influence of surface engineering of gold nanoparticles (GNPs) to the alteration of nonlinear NMPs such as drained Poisson’s ratio, effective shear stress, diffusion constant and pore dimensions of cell membranes during their uptake. Herein, we used pancreatic cancer (PDAC) cell lines including Panc1, AsPC-1 and endothelial cell HUVECs to understand the receptor-dependent and -independent endocytosis of two different GNPs derived using plectin-1 targeting peptide (PTP-GNP) and corresponding scrambled peptide (sPEP-GNP). Compared to untreated cells, in case of receptor dependent endocytosis of PTP-GNPs diffusion coefficient altered ~1264-fold and ~1530-fold and pore size altered ~320-fold and ~260-fold in Panc1 and AsPC-1 cells respectively. Whereas for receptor independent mechanisms, we observed modest alteration in diffusion coefficient and pore size, in these cells compared to untreated cells. Effective shear stress corresponding to 7.38±0.15 kPa and 20.49±0.39 kPa in PTP-GNP treatment in Panc1 and AsPC-1, respectively was significantly more than that for sPEP-GNP. These results demonstrate that with temporal recruitment of plectin-1 during receptor mediated endocytosis affects the poroelastic attributes of the membrane. ConclusionThis study confirms that nonlinear NMPs of cell membrane are directly associated with the uptake mechanism of nanoparticles and can provide promising insights of the nature of endocytosis mechanism involved for organ specific drug delivery using nanoparticles. Hence, nanomechanical analysis of cell membrane es using this noninvasive, label-free and live-cell analytical tool can therefore be instrumental to evaluate therapeutic benefit of nanoformulations.


2021 ◽  
Author(s):  
Bhavin S Khatri

The structural maintenance of chromosome complexes exhibit the remarkable ability to actively extrude DNA, which has led to the appealing and popular "loop extrusion" model to explain one of the most important processes in biology: the compaction of chromatin during the cell cycle. A potential mechanism for the action of extrusion is the classic Brownian ratchet, which requires short DNA loops to overcome an initial enthalpic barrier to bending, before favoured entropic growth of longer loops. We present a simple model of the constrained dynamics of DNA loop formation based on a frictional worm like chain, where for circular loops of order, or smaller than the persistence length, internal friction to bending dominates solvent dynamics. Using Rayleigh's dissipation function, we show how bending friction can be translated to simple one dimensional diffusion of the angle of the loop resulting in a Smoluchowski equation with a coordinate dependent diffusion constant. This interplay between Brownian motion, bending dissipation and geometry of loops leads to a qualitatively new phenomenon, where the friction vanishes for bends with an angle of exactly 180°, due to a decoupling between changes in loop curvature and angle. Using this theory and given current parameter uncertainties, we tentatively predict mean first passage times of between 1 and 10 seconds, which is of order the cycle time of ATP, suggesting spontaneous looping could be sufficient to achieve efficient initiation of looping.


2021 ◽  
Author(s):  
Jinggang Lan ◽  
David Wilkins ◽  
Vladimir Rybkin ◽  
Marcella Iannuzzi ◽  
Juerg Hutter

We report the static and dynamical properties of liquid water at second-order Møller-Plesset perturbation theory level (MP2) with classical and quantum dynamics simulations using a neural network potential. We examined the temperature-dependent radial distribution function, diffusion and vibrational dynamics. MP2 theory predicts an over-structured liquid water at ambient conditions, which may be attributed to the incomplete basis set. The excellent agreement with experimental structural properties as well as the diffusion constant is observed at an elevated temperature of 340K.


Sign in / Sign up

Export Citation Format

Share Document