Optimal broadcast scheduling method for VANETs: An adaptive discrete firefly approach

2020 ◽  
Vol 39 (6) ◽  
pp. 8125-8137
Author(s):  
Jackson J Christy ◽  
D Rekha ◽  
V Vijayakumar ◽  
Glaucio H.S. Carvalho

Vehicular Adhoc Networks (VANET) are thought-about as a mainstay in Intelligent Transportation System (ITS). For an efficient vehicular Adhoc network, broadcasting i.e. sharing a safety related message across all vehicles and infrastructure throughout the network is pivotal. Hence an efficient TDMA based MAC protocol for VANETs would serve the purpose of broadcast scheduling. At the same time, high mobility, influential traffic density, and an altering network topology makes it strenuous to form an efficient broadcast schedule. In this paper an evolutionary approach has been chosen to solve the broadcast scheduling problem in VANETs. The paper focusses on identifying an optimal solution with minimal TDMA frames and increased transmissions. These two parameters are the converging factor for the evolutionary algorithms employed. The proposed approach uses an Adaptive Discrete Firefly Algorithm (ADFA) for solving the Broadcast Scheduling Problem (BSP). The results are compared with traditional evolutionary approaches such as Genetic Algorithm and Cuckoo search algorithm. A mathematical analysis to find the probability of achieving a time slot is done using Markov Chain analysis.

Author(s):  
Yang Wang ◽  
Feifan Wang ◽  
Yujun Zhu ◽  
Yiyang Liu ◽  
Chuanxin Zhao

AbstractIn wireless rechargeable sensor network, the deployment of charger node directly affects the overall charging utility of sensor network. Aiming at this problem, this paper abstracts the charger deployment problem as a multi-objective optimization problem that maximizes the received power of sensor nodes and minimizes the number of charger nodes. First, a network model that maximizes the sensor node received power and minimizes the number of charger nodes is constructed. Second, an improved cuckoo search (ICS) algorithm is proposed. This algorithm is based on the traditional cuckoo search algorithm (CS) to redefine its step factor, and then use the mutation factor to change the nesting position of the host bird to update the bird’s nest position, and then use ICS to find the ones that maximize the received power of the sensor node and minimize the number of charger nodes optimal solution. Compared with the traditional cuckoo search algorithm and multi-objective particle swarm optimization algorithm, the simulation results show that the algorithm can effectively increase the receiving power of sensor nodes, reduce the number of charger nodes and find the optimal solution to meet the conditions, so as to maximize the network charging utility.


Author(s):  
Surender Reddy Salkuti

<p>This paper solves an optimal reactive power scheduling problem in the deregulated power system using the evolutionary based Cuckoo Search Algorithm (CSA). Reactive power scheduling is a very important problem in the power system operation, which is a nonlinear and mixed integer programming problem. It optimizes a specific objective function while satisfying all the equality and inequality constraints. In this paper, CSA is used to determine the optimal settings of control variables such as generator voltages, transformer tap positions and the amount of reactive compensation required to optimize the certain objective functions. The CSA algorithm has been developed from the inspiration that the obligate brood parasitism of some Cuckoo species lay their eggs in nests of other host birds which are of other species. The performance of CSA for solving the proposed optimal reactive power scheduling problem is examined on standard Ward Hale 6 bus, IEEE 30 bus, 57 bus, 118 bus and 300 bus test systems. The simulation results show that the proposed approach is more suitable, effective and efficient compared to other optimization techniques presented in the literature.</p>


Algorithms ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 36 ◽  
Author(s):  
Yu Feng ◽  
Jianzhong Zhou ◽  
Li Mo ◽  
Chao Wang ◽  
Zhe Yuan ◽  
...  

Author(s):  
A. Vasan ◽  
K. Srinivasa Raju ◽  
B. Sriman Pankaj

Abstract Water Distribution Network(s) (WDN) design is gaining prominence in the urban planning context. Several factors that play a significant role in design are uncertainty in data, non-linear relation of head loss & discharge, combinatorial nature of the problem, and high computational requirements. In addition, many conflicting objectives are possible and required for effective WDN design, such as cost, resilience, and leakage. Most of the research work published has used multiobjective evolutionary optimization in solving such complex WDN. However, the challenge of such population based evolutionary approaches is that they provide multiple trade-off Pareto optimal solutions to the decision-maker who will have to choose another set of techniques to arrive at a single optimal solution. The present study employs a fuzzy optimization approach that would provide a single optimal WDN design for Hanoi and Pamapur, India. Maximization of network resilience (NR) and minimization of network cost (NC) are employed in a multiobjective context. Later, minimization of network leakages (NL) is also incorporated, leading to three objective problems. Hyperbolic Membership Function (HMF), Exponential Membership Function (EMF), and Non-linear Membership Function (NMF) are employed in Self-Adaptive Cuckoo Search Algorithm based fuzzy optimization. HMF is found suitable to determine the best possible WDN design for chosen case studies based on the highest degree of satisfaction. HIGHLIGHT Most of the research conducted till now have used evolutionary multiobjective optimization in solving WDNs. But, the challenge of such evolutionary approaches is that they provide multiple trade-off pareto optimal solutions to the decision maker who will have to further choose another methodology to converge to a single optimal solution. The proposed methodology would simplify the decision-making process for an engineer.


2020 ◽  
Author(s):  
Yang Wang ◽  
feifan wang ◽  
Yujun Zhu ◽  
Yiyang Liu ◽  
Chuanxin Zhao

Abstract In wireless rechargeable sensor network, the deployment of charger node directly affects the overall charging utility of sensor network. Aiming at this problem, this paper abstracts the charger deployment problem as a multi-objective optimization problem that maximizes the received power of sensor nodes and minimizes the number of charger nodes. First, a network model that maximizes the sensor node received power and minimizes the number of charger nodes is constructed. Second, an Improved Cuckoo Search (ICS) algorithm is proposed. This algorithm is based on the traditional Cuckoo Search algorithm (CS) to redefine its step factor, and then use the mutation factor to change the nesting position of the host bird to update the bird ’s nest position, and then use ICS to find the ones that maximize the received power of the sensor node and minimize the number of charger nodes optimal solution. Compared with the traditional cuckoo search algorithm and multi-objective particle swarm optimization algorithm, the simulation results show that the algorithm can effectively increase the receiving power of sensor nodes, reduce the number of charger nodes and find the optimal solution to meet the conditions, so as to maximize the network charging utility.


Sign in / Sign up

Export Citation Format

Share Document