Enabling continuous connectivity services for ambrosus blockchain application by incorporating 5G-multilevel machine learning orchestrations
Most revolutionary applications extending far beyond smartphones and high configured mobile device use to the future generation wireless networks’ are high potential capabilities in recent days. One of the advanced wireless networks and mobile technology is 5G, where it provides high speed, better reliability, and amended capacity. 5 G offers complete coverage, which is accommodates any IoT device, connectivity, and intelligent edge algorithms. So that 5 G has a high demand in a wide range of commercial applications. Ambrosus is a commercial company that integrates block-chain security, IoT network, and supply chain management for medical and food enterprises. This paper proposed a novel framework that integrates 5 G technology, Machine Learning (ML) algorithms, and block-chain security. The main idea of this work is to incorporate the 5 G technology into Machine learning architectures for the Ambrosus application. 5 G technology provides continuous connection among the network user/nodes, where choosing the right user, base station, and the controller is obtained by using for ML architecture. The proposed framework comprises 5 G technology incorporate, a novel network orchestration, Radio Access Network, and a centralized distributor, and a radio unit layer. The radio unit layer is used for integrating all the components of the framework. The ML algorithm is evaluated the dynamic condition of the base station, like as IoT nodes, Ambrosus users, channels, and the route to enhance the efficiency of the communication. The performance of the proposed framework is evaluated in terms of prediction by simulating the model in MATLAB software. From the performance comparison, it is noticed that the proposed unified architecture obtained 98.6% of accuracy which is higher than the accuracy of the existing decision tree algorithm 97.1% .