feature extraction and selection
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 98)

H-INDEX

22
(FIVE YEARS 6)

Author(s):  
Héctor A. Sánchez-Hevia ◽  
Roberto Gil-Pita ◽  
Manuel Utrilla-Manso ◽  
Manuel Rosa-Zurera

AbstractThis paper analyses the performance of different types of Deep Neural Networks to jointly estimate age and identify gender from speech, to be applied in Interactive Voice Response systems available in call centres. Deep Neural Networks are used, because they have recently demonstrated discriminative and representation capabilities in a wide range of applications, including speech processing problems based on feature extraction and selection. Networks with different sizes are analysed to obtain information on how performance depends on the network architecture and the number of free parameters. The speech corpus used for the experiments is Mozilla’s Common Voice dataset, an open and crowdsourced speech corpus. The results are really good for gender classification, independently of the type of neural network, but improve with the network size. Regarding the classification by age groups, the combination of convolutional neural networks and temporal neural networks seems to be the best option among the analysed, and again, the larger the size of the network, the better the results. The results are promising for use in IVR systems, with the best systems achieving a gender identification error of less than 2% and a classification error by age group of less than 20%.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Yuan Tang ◽  
Zining Zhao ◽  
Shaorong Zhang ◽  
Zhi Li ◽  
Yun Mo ◽  
...  

Feature extraction and selection are important parts of motor imagery electroencephalogram (EEG) decoding and have always been the focus and difficulty of brain-computer interface (BCI) system research. In order to improve the accuracy of EEG decoding and reduce model training time, new feature extraction and selection methods are proposed in this paper. First, a new spatial-frequency feature extraction method is proposed. The original EEG signal is preprocessed, and then the common spatial pattern (CSP) is used for spatial filtering and dimensionality reduction. Finally, the filter bank method is used to decompose the spatially filtered signals into multiple frequency subbands, and the logarithmic band power feature of each frequency subband is extracted. Second, to select the subject-specific spatial-frequency features, a hybrid feature selection method based on the Fisher score and support vector machine (SVM) is proposed. The Fisher score of each feature is calculated, then a series of threshold parameters are set to generate different feature subsets, and finally, SVM and cross-validation are used to select the optimal feature subset. The effectiveness of the proposed method is validated using two sets of publicly available BCI competition data and a set of self-collected data. The total average accuracy of the three data sets achieved by the proposed method is 82.39%, which is 2.99% higher than the CSP method. The experimental results show that the proposed method has a better classification effect than the existing methods, and at the same time, feature extraction and feature selection time also have greater advantages.


2022 ◽  
Author(s):  
Vijay Kumar Gugulothu ◽  
Savadam Balaji

Abstract Detection of malignant lung nodules at an early stage may allow for clinical interventions that increase the survival rate of lung cancer patients. The use of hybrid deep learning techniques to detect nodules will improve the sensitivity of lung cancer screening and the interpretation speed of lung scans.Accurate detection of lung nodes is an important step in computed tomography (CT) imaging to detect lung cancer. However, it is very difficult to identify strong nodes due to the diversity of lung nodes and the complexity of the surrounding environment.Here, we proposed alung nodule detection and classification with CT images based on hybrid deep learning (LNDC-HDL) techniques. First, we introduce achaotic bird swarm optimization (CBSO) algorithm for lung nodule segmentation using statistical information. Second, we illustrate anImproved Fish Bee (IFB) algorithm for feature extraction and selection process. Third, we develop hybrid classifier i.e. hybrid differential evolution based neural network (HDE-NN) for tumor prediction and classification.Experimental results have shown that the use of computed tomography, which demonstrates the efficiency and importance of the HDE-NN specific structure for detecting lung nodes on CT scans, increases sensitivity and reduces the number of false positives. The proposed method shows that the benefits of HDE-NN node detection can be reaped by combining clinical practice.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 406
Author(s):  
Christopher Schnur ◽  
Payman Goodarzi ◽  
Yevgeniya Lugovtsova ◽  
Jannis Bulling ◽  
Jens Prager ◽  
...  

Data-driven analysis for damage assessment has a large potential in structural health monitoring (SHM) systems, where sensors are permanently attached to the structure, enabling continuous and frequent measurements. In this contribution, we propose a machine learning (ML) approach for automated damage detection, based on an ML toolbox for industrial condition monitoring. The toolbox combines multiple complementary algorithms for feature extraction and selection and automatically chooses the best combination of methods for the dataset at hand. Here, this toolbox is applied to a guided wave-based SHM dataset for varying temperatures and damage locations, which is freely available on the Open Guided Waves platform. A classification rate of 96.2% is achieved, demonstrating reliable and automated damage detection. Moreover, the ability of the ML model to identify a damaged structure at untrained damage locations and temperatures is demonstrated.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 140
Author(s):  
Abdulaziz Fatani ◽  
Abdelghani Dahou ◽  
Mohammed A. A. Al-qaness ◽  
Songfeng Lu ◽  
Mohamed Abd Abd Elaziz

Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity of the IoT for intrusion detection and malicious identification. Thus, in this study, we develop new feature extraction and selection methods and for the IDS system using the advantages of the swarm intelligence (SI) algorithms. We design a feature extraction mechanism depending on the conventional neural networks (CNN). After that, we present an alternative feature selection (FS) approach using the recently developed SI algorithm, Aquila optimizer (AQU). Moreover, to assess the quality of the developed IDS approach, four well-known public datasets, CIC2017, NSL-KDD, BoT-IoT, and KDD99, were used. We also considered extensive comparisons to other optimization methods to verify the competitive performance of the developed method. The results show the high performance of the developed approach using different evaluation indicators.


2021 ◽  
Vol 1 (1) ◽  
pp. 453-478
Author(s):  
Heriyanto Heriyanto ◽  
Herlina Jayadianti ◽  
Juwairiah Juwairiah

There are two approaches to Qur’an recitation, namely talaqqi and qira'ati. Both approaches use the science of recitation containing knowledge of the rules and procedures for reading the Qur'an properly. Talaqqi requires the teacher and students to sit facing each other while qira'ati is the recitation of the Qur'an with rhythms and tones. Many studies have developed an automatic speech recognition system for Qur’an recitation to help the learning process. Feature extraction model using Mel Frequency Cepstral Coefficient (MFCC) and Linear Predictive Code (LPC). The MFCC method has an accuracy of 50% to 60% while the accuracy of Linear Predictive Code (LPC) is only 45% to 50%, so the non-linear MFCC method has higher accuracy than the linear approach method. The cepstral coefficient feature that is used starts from 0 to 23 or 24 cepstral coefficients. Meanwhile, the frame taken consists of 0 to 10 frames or eleven frames. Voting for 300 recorded voice samples was tested against 200 voice recordings, both male and female voices. The frequency used was 44.100 kHz stereo 16 bit. This study aims to obtain good accuracy by selecting the right feature on the cepstral coefficient using MFCC feature extraction and matching accuracy through the selection of the cepstral coefficient feature with Dominant Weight Normalization (NBD) at TPA Nurul Huda Plus Purbayan. Accuracy results showed that the MFCC method with the selection of the 23rd cepstral coefficient has a higher accuracy rate of 90.2% compared to the others. It can be concluded that the selection of the right features on the 23rd cepstral coefficient affects the accuracy of the voice of Qur’an recitation.


Author(s):  
Kishore Balasubramanian ◽  
Ananthamoorthy NP ◽  
Ramya K

Parkinson’s and Alzheimer’s Disease are believed to be most prevalent and common in older people. Several data-mining approaches are employed on the neuro-degenerative data in predicting the disease. A novel method has been built and developed to diagnose Alzheimer’s (AD) and Parkinson’s (PD) in early stages, which includes image acquisition, pre-processing, feature extraction and selection, followed by classification. The challenge lies in selecting the optimal feature subset for classification. In this work, the Sunflower Optimisation Algorithm (SFO) is employed to select the optimal feature set, which is then fed to the Kernel Extreme Learning Machine (KELM) for classification. The method is tested on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and local dataset for AD, the University of California, Irvine (UCI) machine learning repository and the Istanbul dataset for PD. Experimental outcomes have demonstrated a high accuracy level in both AD and PD diagnosis. For AD diagnosis, the highest classification rate is obtained for the AD versus NC classification using the ADNI dataset (99.32%) and local dataset (98.65%). For PD diagnosis, the highest accuracy of 99.52% and 99.45% is achieved on the UCI and Istanbul datasets, respectively. To show the robustness of the method, the method is compared with other similar methods of feature selection and classification with 10-fold cross-validation (CV) and with unseen data. The method proposed has an excellent prospect, bringing greater convenience to clinicians in making a better solid decision in clinical diagnosis of neuro-degenerative diseases.


2021 ◽  
Author(s):  
Rina S. Patil ◽  
Mohit Gangwar

Machine learning enables AI and is used in data analytics to overcome many challenges. Machine learning was the growing method of predicting outcomes based on existing data. The computer learns characteristics from the test implementation, then applies characteristics to an unknown dataset to predict the result. Classification is an essential technique of machine learning which is widely used for forecasting. Some classification techniques predict with adequate accuracy, while others show a small precision. This research investigates a process called machine learning classification, which combines different classifiers to enhance the precision of weak architectures. Experimentation using this tool was conducted using a database on heart disease. The collecting and measuring data method were designed to decide how to use the ensemble methodology to improve predictive accuracy in cardiovascular disease. This paper aims not only to enhance the precision of poor different classifiers but also to apply the algorithm with a neural network to demonstrate its usefulness in predicting disease in its earliest stages. The study results show that various classification algorithmic strategies, such as support vector machines, successfully improve the forecasting ability of poor classifiers and show satisfactory success in recognizing heart attack risk. Using ML classification, a cumulative improvement in the accuracy was obtained for poor classification models. That process efficiency was further improved with the introduction of feature extraction and selection, and the findings show substantial improvements in predictive power.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7238
Author(s):  
Shitu Zhang ◽  
Zhixun Zhu ◽  
Yang Li

Transient stability assessment (TSA) has always been a fundamental means for ensuring the secure and stable operation of power systems. Due to the integration of new elements such as power electronics, electric vehicles and renewable power generations, dynamic characteristics of power systems are becoming more and more complex, which makes TSA an increasingly urgent task. Since traditional time-domain simulations and direct method cannot meet the actual operation requirements of power systems, data-driven TSA has attracted growing attention from both academia and industry. This paper makes a comprehensive review from the following four aspects: feature extraction and selection, model construction, online learning and rule extraction; and then, summarizes the challenges and prospects for future research; finally, draws the conclusions of this review. This review will be beneficial for relevant researchers to better understand the research status, key technologies, and existing challenges in the field.


Sign in / Sign up

Export Citation Format

Share Document