Energy efficiency in housing and socio-economic development in Nigeria

2019 ◽  
pp. 238-243
Author(s):  
Albert Olotuah A ◽  
Rukayyatu Tukur B ◽  
Kingsley Dimuna O ◽  
Abiodun Olotuah O ◽  
Olutunde Adesiji S ◽  
...  

Energy efficient houses consume less energy while maintaining or improving the comfort conditions of occupants. Energy efficient buildings result in less environmental impact and are economically and environmentally sustainable. Residential buildings account for the majority of electricity consumption in Nigeria. Because of the poor state of energy generation and transmission in Nigeria energy efficiency measures are necessary to reduce the energy required in houses. This would substantially reduce the dependence on the grid electricity supply. Energy efficient buildings have tremendous benefits in social, economic, and environmental terms. In economic terms the production of energy-efficient buildings result in growing market demand with higher quality and innovative buildings, and in social terms it leads to improved urban space and local climate, and liveable buildings. Energy efficient buildings also ensure resource efficiency, and reduction of Green House Gas emissions. Energy efficiency in buildings starts from the design of buildings, and through to construction and operation. The objective of this paper is the examination of energy efficiency in housing in Nigeria and its impact upon socio-economic development in the country. The paper focuses on energy-efficient design strategies, and initiatives to achieve low carbon emission in housing in Nigeria The paper examines the housing situation in Nigeria and the phenomenon of urbanisation which has led to unplanned urban growth, grievous housing poverty, slum formation, and near collapse of urban services and infrastructure particularly electricity supply. It affirms the need to adopt energy efficiency in housing and it examines passive design strategies and low carbon initiatives in housing construction. It takes a critical look at the adoption of sustainability practices in housing. The paper asserts that energy efficiency would enhance the growth of electricity consumption and boost the socio-economic development of the country. The paper concludes that energy efficiency is capable of engendering socio-economic development of the country particularly productivity and income growth.

2014 ◽  
Vol 899 ◽  
pp. 120-125
Author(s):  
Bernhard Sommer ◽  
Ulrich Pont

In this paper, the authors want to show a method that allows customizing energy efficient buildings to the very task and to the very site by linking environmental data and design strategies through algorithmic processes. An optimum solution for the energy efficiency of a building can then be found by running an evolutionary solver.


2020 ◽  
Vol 13 (2) ◽  
pp. 90-96
Author(s):  
E.V. Nezhnikova ◽  
◽  
M.V Chernyaev ◽  

The article presents the problems of ensuring energy efficiency of housing construction in the Russian Federation. Unfortunately, for a variety of reasons and, despite the existence of federal and regional legislation, today Russia does not pay due attention to this issue, which leads to an unreasonable increase in electricity consumption both during the creation of residential real estate objects and during their operation. 96 Экономические системы. 2020. № 2 Economic Systems. 2020. No. 2 The relevance of the topic is enhanced by significant energy consumption of residential buildings in use: more than 50% of electrical energy consumption falls on these real estate objects. Therefore, it is no coincidence, but a completely logical trend of the 21st century, that the governments of most countries popularized the idea of designing and building energy-efficient residential buildings. It was established that the improvement of domestic legislation in terms of energy efficiency has greatly improved the regulatory framework for the design and construction of energy-efficient residential real estate.


2020 ◽  
Vol 13 (2) ◽  
pp. 47-56
Author(s):  
I. V. Yarmoshenko ◽  
A. D. Onishchenko ◽  
G. P. Malinovsky ◽  
A. V. Vasilyev ◽  
E. I. Nazarov ◽  
...  

A comparative analysis of the radon concentrations in modern multi-storey residential buildings of high energy efficiency class and buildings typical for urban areas of the twentieth century was carried out. The study was conducted in Russian cities located in various climatic zones – Ekaterinburg, Krasnodar, St. Petersburg, Salekhard, Chelyabinsk. The radon concentration in samples of buildings was measured using integrated radon radiometers based on nuclear track detectors according to a single method. The surveyed sample included 498 apartments in multi-apartment buildings. Among all the examined building types, the highest average radon concentration is observed in modern energy-efficient houses – 43 Bq/m3. In other types of buildings, the following average radon concentrations were obtained: brick 2–5 floors – 35 Bq/m3; panel 5 floors – 32 Bq/m3; panel 7–12 floors 1970-1990 years of construction – 22 Bq/m3; brick> 5 floors 1970–1980 years of construction – 20 Bq m3; panel, built since 1990 – 24 Bq/m3. The results of the study confirm the assumption that radon concentration in modern multi-storey energy-efficient houses is on average higher than in typical residential buildings of the Soviet period. The increased accumulation of radon in energy-efficient buildings is associated with a decrease in the building envelope permeability and the contribution of fresh air to the general air exchange. Despite the fact that there were no cases of exceeding hygienic standards for the indoor radon concentration in the framework of this study, the higher radon concentration in buildings of increased energy efficiency requires attention from the point of view of implementing the principle of optimization of radiation protection. In the future, extensive construction of energy-efficient buildings may increase the average and collective doses to the urban population in the Russian Federation.


2019 ◽  
Vol 110 ◽  
pp. 01004
Author(s):  
Yasmin Begich ◽  
Anna Babanina ◽  
Kristina Ziiaeva ◽  
Sergey Barinov

The relevance of this work lies primarily in the importance of this issue in the construction field. According to statistics, construction projects consume 40% of world energy. Industrial and residential buildings are becoming one of the main sources of thermal emissions of carbon dioxide into the atmosphere. The second argument in favor of relevance is the use of basalt composite reinforcement for brickwork. And the third argument can be the use of CAD to simulate the energy consumption of the building. The practical value of the work is to use the recommendations for the construction and reconstruction of energy efficient buildings located in the Arctic zone. The theoretical value of the developed model and the proposed technology for determining energy efficiency indicators will allow it to be used for further calculations.


2021 ◽  
Vol 11 (13) ◽  
pp. 6005
Author(s):  
Daniel Villanueva ◽  
Moisés Cordeiro-Costas ◽  
Andrés E. Feijóo-Lorenzo ◽  
Antonio Fernández-Otero ◽  
Edelmiro Miguez-García

The aim of this paper is to shed light on the question regarding whether the integration of an electric battery as a part of a domestic installation may increase its energy efficiency in comparison with a conventional case. When a battery is included in such an installation, two types of electrical conversion must be considered, i.e., AC/DC and DC/AC, and hence the corresponding losses due to these converters must not be forgotten when performing the analysis. The efficiency of the whole system can be increased if one of the mentioned converters is avoided or simply when its dimensioning is reduced. Possible ways to achieve this goal can be: to use electric vehicles as DC suppliers, the use of as many DC home devices as possible, and LED lighting or charging devices based on renewables. With all this in mind, several scenarios are proposed here in order to have a look at all possibilities concerning AC and DC powering. With the aim of checking these scenarios using real data, a case study is analyzed by operating with electricity consumption mean values.


2021 ◽  
pp. 1420326X2110130
Author(s):  
Manta Marcelinus Dakyen ◽  
Mustafa Dagbasi ◽  
Murat Özdenefe

Ambitious energy efficiency goals constitute an important roadmap towards attaining a low-carbon society. Thus, various building-related stakeholders have introduced regulations targeting the energy efficiency of buildings. However, some countries still lack such policies. This paper is an effort to help bridge this gap for Northern Cyprus, a country devoid of building energy regulations that still experiences electrical energy production and distribution challenges, principally by establishing reference residential buildings which can be the cornerstone for prospective building regulations. Statistical analysis of available building stock data was performed to determine existing residential reference buildings. Five residential reference buildings with distinct configurations that constituted over 75% floor area share of the sampled data emerged, with floor areas varying from 191 to 1006 m2. EnergyPlus models were developed and calibrated for five residential reference buildings against yearly measured electricity consumption. Values of Mean Bias Error (MBE) and Cumulative Variation of Root Mean Squared Error CV(RMSE) between the models’ energy consumption and real energy consumption on monthly based analysis varied within the following ranges: (MBE)monthly from –0.12% to 2.01% and CV(RMSE)monthly from 1.35% to 2.96%. Thermal energy required to maintain the models' setpoint temperatures for cooling and heating varied from 6,134 to 11,451 kWh/year.


Author(s):  
Viacheslav Martynov

To calculate the optimal parameters of outbuildings, a mathematical model and method for optimizing the shape and resistance of heat transfer for opaque and transparent structures with a certain constant number of faces, building volume and amount of insulation to minimize the thermal balance of enclosing structures with the environment during the heating period In the course of calculations the geometrical parameters of translucent, opaque structures in the heat-insulating shell of buildings are determined taking into account heat losses, heat influx from solar radiation by the criterion of ensuring minimum heat losses through enclosing structures, rational parameters (buildings) The given technique and mathematical models should be used in the future in the design of energy efficient buildings in the reconstruction and thermal modernization of buildings. This will increase their energy efficiency and, accordingly, the energy efficiency class of buildings. For the research faceted attached building in the form of a triangular pyramid, the reduction in heat loss was 14.82 percent only due to the optimization of the shape and redistribution of the insulation. Similar results were obtained for other initial forms. For the first time, a computerized method was proposed, an algorithm and application package Optimparam for multiparameter shape optimization and insulation of translucent and opaque structures for outbuildings with a given number of arbitrarily arranged faces were developed.


Author(s):  
Hugo Hens

Since the 1990s, the successive EU directives and related national or regional legislations require new construction and retrofits to be as much as possible energy-efficient. Several measures that should stepwise minimize the primary energy use for heating and cooling have become mandated as requirement. However, in reality, related predicted savings are not seen in practice. Two effects are responsible for that. The first one refers to dweller habits, which are more energy-conserving than the calculation tools presume. In fact, while in non-energy-efficient ones, habits on average result in up to a 50% lower end energy use for heating than predicted. That percentage drops to zero or it even turns negative in extremely energy-efficient residences. The second effect refers to problems with low-voltage distribution grids not designed to transport the peaks in electricity whensunny in summer. Through that, a part of converters has to be uncoupled now and then, which means less renewable electricity. This is illustrated by examples that in theory should be net-zero buildings due to the measures applied and the presence of enough photovoltaic cells (PV) on each roof. We can conclude that mandating extreme energy efficiency far beyond the present total optimum value for residential buildings looks questionable as a policy. However, despite that, governments and administrations still seem to require even more extreme measurements regarding energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document