Solubility Enhancement of Poorly Soluble Drug Simvastatin by Solid Dispersion Technique

2016 ◽  
Vol 2 (2) ◽  
pp. 91-95
Author(s):  
Neelima Rani T ◽  
Pavani A ◽  
Sobhita Rani P ◽  
Srilakshmi N

This study aims to formulate solid dispersions (SDs) of Simvastatin (SIM) to improve the aqueous solubility, dissolution rate and to facilitate faster onset of action. Simvastatin is a BCS class II drug having low solubility & therefore low oral bioavailability. In the present study, SDs of simvastatin different drug-carrier ratios were prepared by kneading method. The results showed that simvastatin solubility & dissolution rate enhanced with polymer SSG in the ratio 1:7 due to increase in wetting property or possibly may be due to change in crystallinity of the drug.

2020 ◽  
Vol 11 (1) ◽  
pp. 663-668
Author(s):  
Yasmin Begum M ◽  
Prathyusha Reddy G

The intention of the current study was to boost the solubility of Fenofibrate by solid dispersion technique which is an efficient technique in improving the solubility and hence the dissolution rate of poorly soluble drugs in the form of eutectic mixtures by producing fine dispersion when in contact with gastrointestinal fluid and also the technique offers the choices of carriers to be combined with drug conveniently to improve the solubility to a considerable extent. Fenofibrate a BCS class II Antihyperlipidemic drug belongs to fibrate class and it is a lipid-lowering drug used in the treatment of hyperlipidemia. Fenofibrate is insoluble in water and hence shows poor dissolution in gastric fluid with reduced absorption characteristics. In order to improve the solubility, dissolution rate, gastrointestinal absorption and oral bioavailability, it was decided to prepare fenofibrate solid dispersion and evaluated. They were prepared using poly ethylene glycol 4000, 6000, 8000 and β-cyclodextrin by fusion technique and optimized solid dispersion was also lyophilized. Physical characterization of solid inclusion complex of fenofibrate was studied and showed that there were no drug excipients interactions. Dissolution studies showed a momentous rise in a dissolution of Fenofibrate when dispersed in polymers. Inturn aqueous solubility was enlarged linearly as a function of the concentration of β- Cyclodextrin.


2020 ◽  
Vol 19 (9) ◽  
pp. 1797-1805
Author(s):  
Nayyer Islam ◽  
Muhammad Irfan ◽  
Nasir Abbas ◽  
Haroon Khalid Syed ◽  
Muhammad Shahid Iqbal ◽  
...  

Purpose: To investigate the efficiency of different solubilizing agents in improving solubility as well as dissolution rate of ebastine (a BCS class II drug) by incorporating prepared solid dispersion into fast disintegrating tablets.Method: The solubility of ebastine was determined in distilled water, lipids and solubilizing agents. Subsequently, the binary solid dispersions were prepared by kneading method using varying weight ratios of ebastine and solubilizing agents. The solid dispersions were then incorporated into fast disintegrating tablets (SD-FDT). Central composite rotatable design (CCD) was used to determine the impact of super disintegrating agents on disintegration time and friability of tablets. The solubility and dissolution rate of developed SD-FDT were compared with a marketed brand. The solid dispersion particles were characterized by Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), powder x-ray diffraction (P-XRD) and scanning electron microscopy (SEM).Results: The saturated solubility of pure ebastine in water was 0.002 ± 0.041 mg/ml while the aqueous solubility of EBT/poloxamer solid dispersion SET3 (P) was 0.018 ± 2.510 mg/ml; on the other hand, EBT/soluplus solid dispersion SET1(S) has an aqueous solubility of 0.242 ± 1.390 mg/ml. Within 30 min, drug release was 14.00 ± 1.77, 78.00 ± 2.31 and 98.70 ± 2.54 % from pure EBT, SET3 (P) and SET1(S), respectively.Conclusion: The solubility and dissolution rate of ebastine has been successfully enhanced by incorporating its solid dispersion in fast-disintegrating tablets (SD-FDT). Keywords: Ebastine, Solid dispersion, Poloxamer 188, Soluplus, Solubility, Dissolution


Author(s):  
Pawar AR ◽  
◽  
Mehetre JS ◽  

Purpose: The objective of the present study was to formulate solid dispersions (SD) of Atorvastatin calcium to improve the aqueous solubility and dissolution rate to facilitate faster onset of action. Atorvastatin calcium is a lipid lowering agent belonging to BCS-II having low solubility and high permeability.


Author(s):  
Mohan M Varma ◽  
Satish Kumar P

Gliclazide is an anti-diabetic drug. It is a BCS class-II (poorly water soluble) drug and its bioavailability is dissolution rate limited. The dissolution rate of the drug was enhanced by using the solid dispersion technique. Solid dispersions were prepared using PVP-K30 (polyvinylpyrrolidone) and hydroxypropyl-β-cyclodextrin (HP BCD) as the hydrophilic carriers. The solid dispersions were characterized by using DSC (Differential scanning calorimetry), XRD (X-ray diffractometry) and FTIR (Fourier transform infrared spectroscopy). Solid dispersions were formulated into tablets. The formulated tablets were evaluated for the quality control parameters and dissolution rates. The solid-dispersion tablets enhanced the dissolution rate of the poorly soluble drug. The optimized formulation showed a 3 fold faster drug release compared to the branded tablet. The XRD studies demonstrated the remarkable reduction in the crystallinity of the drug in the solid dispersion. The faster dissolution rate of the drug from the solid dispersion is attributed to the marked reduction in the crystallinity of the drug. The DSC and FTIR studies demonstrated the absence of the drug-polymer interaction.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Vishwa M

Rilpivirine benzonitrile is a pharmaceutical drug used for the treatment of HIV infection it is characterized with poor solubility that limits its absorption and dissolution rate, which delays onset of action. In the present study, immediate release solid dispersion of antiretroviral Rilpivirine was formulated by solvent evaporation technique. Eighteen solid dispersions were prepared with 1:1:1, 1:2:1 and 1:3:1 ratios of drug: carrier: surfactant. There was significant improvement in the rate of drug release from all 18 solid dispersions and the formulation (SE12) comprising Rilpivirine: Kolliwax GMS II: SLS in 1:3:1 by solvent evaporation process has shown enhanced solubility about 30 folds and significant improvement in the rate of drug release. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of Rilpivirine has been converted into an amorphous form from crystalline within the solid dispersion formulation. The obtained results suggested that developed solid dispersion by solvent evaporation method might be an efficacious approach for enhancing the solubility and dissolution rate of Rilpivirine.   


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Srinivas I

Repaglinide is a pharmaceutical drug used for the treatment of type II diabetes mellitus, it is characterized with poor solubility which limits its absorption and dissolution rate and delays onset of action. In the present study, immediate release solid dispersion of repaglinide was formulated by solvent evaporation technique. Repaglinide solid dispersions were prepared using PEG 8000, Pluronic F 127 and Gelucire 44/14 by solvent evaporation method. A 3-factor, 3-level central composite design employed to study the effect of each independent variable on dependent variables. FTIR studies revealed that no drug excipient interaction takes place. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of repaglinide has been converted into an amorphous form from crystalline within the solid dispersion formulation. The correlation coefficient showed that the release profile followed Higuchi model anomalous behavior and hence release mechanism was indicative of diffusion. The obtained results suggested that developed solid dispersion by solvent evaporation method might be an efficacious approach for enhancing the solubility and dissolution rate of repaglinide.


Author(s):  
Meka Lingam ◽  
Vobalaboina Venkateswarlu

The low aqueous solubility of celecoxib (CB) and thus its low bioavailability is a problem.    Thus, it is suggested to improve the solubility using cosolvency and solid dispersions techniques. Pure CB has solubility of 6.26±0.23µg/ml in water but increased solubility of CB was observed with increasing concentration of cosolvents like PEG 400, ethanol and propylene glycol. Highest solubility (791.06±15.57mg/ml) was observed with cosolvency technique containing the mixture of composition 10:80:10%v/v of water: PEG 400: ethanol. SDs with different polymers like PVP, PEG were prepared and subjected to physicochemical characterization using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), differential scanning calorimetry (DSC), solubility and dissolution studies. These studies reveals that CB exists mainly in amorphous form in prepared solid dispersions of PVP, PEG4000 and PEG6000 further it can also be confirmed by solubility and dissolution rate studies. Solid dispersions of PV5 and PV9 have shown highest saturation solubility and dissolution rate


Author(s):  
Samer K. Ali ◽  
Eman B. H. Al-Khedairy

            Atorvastatin (ATR) is poorly soluble anti-hyperlipidemic drug; it belongs to the class II group according to the biopharmaceutical classification system (BCS) with low bioavailability due to its low solubility. Solid dispersions adsorbate is an effective technique for enhancing the solubility and dissolution of poorly soluble drugs.           The present study aims to enhance the solubility and dissolution rate of ATR using solid dispersion adsorption technique in comparison with ordinary solid dispersion. polyethylene glycol 4000 (PEG 4000), polyethylene glycol 6000 (PEG 6000), Poloxamer188 and Poloxamer 407were used as hydrophilic carriers and Aerosil 200, Aerosil 300 and magnesium aluminium silicate (MAS) as adsorbents.            All solid dispersion adsorbate (SDA) formulas  were prepared in ratios of 1:1:1  (drug: carrier: adsorbent) and evaluated for their water solubility, percentage yield, drug content,  , dissolution, crystal structure using  X-ray powder diffraction (XRD) and Differential Scanning Calorimetry (DSC)  studies and Fourier Transform Infrared Spectroscopy (FTIR) for determination the drug-carrier- adsorbate interaction.                The prepared (SDA) showed significant improvement of drug solubility in all prepared formula. Best result was obtained with formula SDA12(ATR :Poloxamer407 : MAS 1:1:1) that showed 8.07 and 5.38  fold increase in solubility compared to  solubility of pure ATR and  solid dispersion(SD4) (Atorvastatin: Poloxamer 407 1:1) respectively due to increased wettability and reduced crystallinity of the drug which leads to improve drug solubility  and  dissolution .


2021 ◽  
Vol 3 (2) ◽  
pp. 86-98
Author(s):  
Noval Noval ◽  
◽  
Rosyifa Rosyifa ◽  

Diclofenac sodium is included in class II category based on biopharmaceutics classification system (BCS), sodium diclofenac has low solubility and high permeability. Low solubility will affect absorption of drugs in body because rate of dissolution will decrease. PVP K30 is inert carrier that dissolves easily in water and can affect solubility of an active drug substance. To know solid dispersion system increasing dissolution rate of sodium diclofenac by adding variations concentration of PVP K30. Solid dispersion uses solvent method with variations concentration of PVP K30 1:3, 1:5, 1:7 and 1:9. Test physical properties of solid dispersions using a moisture test and compressibility. Solid dispersion dissolution test using type 2 dissolutions test and determination of concentration using UV-VIS spectrophotometry. Test results were analyzed using One Way ANOVA and continued test. Solid dispersion has a good physical whit moisture percentage not >5% and compressibility not >20%. Solid dispersion of sodium diclofenac with addition of PVP K30 can increase dissolution rate compared to pure sodium diclofenac (p<0,05) with highest at ratio 1:7. Each comparison has significant difference (p<0,05) expect in ratio 1:9. Solid dispersion of sodium diclofenac with PVP K30 can increase dissolution rate of pure sodium diclofenac.


Author(s):  
Sanjoy Kumar Das

Improving oral bioavailability of drugs those given as solid dosage forms remains a challenge for the formulation scientists due to solubility problems. The dissolution rate could be the rate-limiting process in the absorption of a drug from a solid dosage form of relatively insoluble drugs. Therefore increase in dissolution of poorly soluble drugs by solid dispersion technique presents a challenge to the formulation scientists. Solid dispersion techniques have attracted considerable interest of improving the dissolution rate of highly lipophilic drugs thereby improving their bioavailability by reducing drug particle size, improving wettability and forming amorphous particles. The term solid dispersion refers to a group of solid products consisting of at least two different components, generally a hydrophilic inert carrier or matrix and a hydrophobic drug. This article reviews historical background of solid dispersion technology, limitations, classification, and various preparation techniques with its advantages and disadvantages. This review also discusses the recent advances in the field of solid dispersion technology. Based on the existing results and authors’ reflection, this review give rise to reasoning and suggested choices of carrier or matrix and solid dispersion procedure.


Sign in / Sign up

Export Citation Format

Share Document