scholarly journals Regularization of a Cauchy problem for the heat equation

2018 ◽  
Vol 1 (T5) ◽  
pp. 184-192
Author(s):  
Au Van Vo ◽  
Tuan Hoang Nguyen

In this paper, we study a Cauchy problem for the heat equation with linear source in the form ut(x,t)= uxx(x,t)+f(x,t), u(L,t)=  φ(t), u(L,t)= Ψ (t), (x,t) ∈ (0,L) ×(0, 2π). This problem is ill-posed in the sense of Hadamard. To regularize the problem, the truncation method is proposed to solve the problem in the presence of noisy Cauchy data φε and Ψε satisfying ‖ φε - φ ‖+‖ Ψε - Ψ ‖ ≤ ε and that fε satisfying ‖ fε(x,. ) - f(x,.) ‖ ≤ ε .  We give some error estimates between the regularized solution and the exact solution under some different a-priori conditions of exact solution.

2018 ◽  
Vol 1 (T5) ◽  
pp. 193-202
Author(s):  
Thang Duc Le

In this paper, we investigate the Cauchy problem for a ND nonlinear elliptic equation in a bounded domain. As we know, the problem is severely ill-posed. We apply the Fourier truncation method to regularize the problem. Error estimates between the regularized solution and the exact solution are established in Hp space under some priori assumptions on the exact solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
Fang-Fang Dou ◽  
Chu-Li Fu

We consider a Cauchy problem for the Helmholtz equation at a fixed frequency. The problem is severely ill posed in the sense that the solution (if it exists) does not depend continuously on the data. We present a wavelet method to stabilize the problem. Some error estimates between the exact solution and its approximation are given, and numerical tests verify the efficiency and accuracy of the proposed method.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 48
Author(s):  
Hongwu Zhang ◽  
Xiaoju Zhang

This article researches an ill-posed Cauchy problem of the elliptic-type equation. By placing the a-priori restriction on the exact solution we establish conditional stability. Then, based on the generalized Tikhonov and fractional Tikhonov methods, we construct a generalized-fractional Tikhonov-type regularized solution to recover the stability of the considered problem, and some sharp-type estimates of convergence for the regularized method are derived under the a-priori and a-posteriori selection rules for the regularized parameter. Finally, we verify that the proposed method is efficient and acceptable by making the corresponding numerical experiments.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Hao Cheng ◽  
Ping Zhu ◽  
Jie Gao

A regularization method for solving the Cauchy problem of the Helmholtz equation is proposed. Thea priorianda posteriorirules for choosing regularization parameters with corresponding error estimates between the exact solution and its approximation are also given. The numerical example shows the effectiveness of this method.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 705 ◽  
Author(s):  
Fan Yang ◽  
Ping Fan ◽  
Xiao-Xiao Li

In this paper, the Cauchy problem of the modified Helmholtz equation (CPMHE) with perturbed wave number is considered. In the sense of Hadamard, this problem is severely ill-posed. The Fourier truncation regularization method is used to solve this Cauchy problem. Meanwhile, the corresponding error estimate between the exact solution and the regularized solution is obtained. A numerical example is presented to illustrate the validity and effectiveness of our methods.


2015 ◽  
Vol 7 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Jingjun Zhao ◽  
Songshu Liu ◽  
Tao Liu

AbstractIn this paper, a Cauchy problem of two-dimensional heat conduction equation is investigated. This is a severely ill-posed problem. Based on the solution of Cauchy problem of two-dimensional heat conduction equation, we propose to solve this problem by modifying the kernel, which generates a well-posed problem. Error estimates between the exact solution and the regularized solution are given. We provide a numerical experiment to illustrate the main results.


2009 ◽  
Vol 19 (09) ◽  
pp. 1631-1641 ◽  
Author(s):  
L. E. PAYNE ◽  
G. A. PHILIPPIN

The Cauchy problem for the heat equation in which Cauchy data are prescribed on the outer boundary of a domain with cavity and no data are given on the inner boundary is known to be ill-posed. By a slight modification of the boundary conditions a new problem is introduced whose solution depends continuously on the data in L2.


1995 ◽  
Vol 18 (3) ◽  
pp. 601-605 ◽  
Author(s):  
Tran Thi Le ◽  
Milagros Navarro

The authors consider the problem of determining the temperature distributionu(x,t)on the half-linex=0,t>0, from measurements at an interior point, for allt>0. As is well-known, this is an ill-posed problem Using the Tikhonov method, the authors give a regularized solution, and assuming the (unknown) exact solution is inHα(ℝ),α>0. They give an error estimate of the order1/(1n1/ ϵ )αforϵ →0, whereϵ >0is a bound on the measurement error.


2020 ◽  
Vol 28 (5) ◽  
pp. 659-676
Author(s):  
Dinh Nho Hào ◽  
Nguyen Van Duc ◽  
Nguyen Van Thang ◽  
Nguyen Trung Thành

AbstractThe problem of determining the initial condition from noisy final observations in time-fractional parabolic equations is considered. This problem is well known to be ill-posed, and it is regularized by backward Sobolev-type equations. Error estimates of Hölder type are obtained with a priori and a posteriori regularization parameter choice rules. The proposed regularization method results in a stable noniterative numerical scheme. The theoretical error estimates are confirmed by numerical tests for one- and two-dimensional equations.


Sign in / Sign up

Export Citation Format

Share Document