AN ILL-POSED PROBLEM FOR THE HEAT EQUATION

2009 ◽  
Vol 19 (09) ◽  
pp. 1631-1641 ◽  
Author(s):  
L. E. PAYNE ◽  
G. A. PHILIPPIN

The Cauchy problem for the heat equation in which Cauchy data are prescribed on the outer boundary of a domain with cavity and no data are given on the inner boundary is known to be ill-posed. By a slight modification of the boundary conditions a new problem is introduced whose solution depends continuously on the data in L2.

2015 ◽  
Vol 29 (1) ◽  
pp. 51-59
Author(s):  
Łukasz Dawidowski

AbstractThe abstract Cauchy problem on scales of Banach space was considered by many authors. The goal of this paper is to show that the choice of the space on scale is significant. We prove a theorem that the selection of the spaces in which the Cauchy problem ut − Δu = u|u|s with initial–boundary conditions is considered has an influence on the selection of index s. For the Cauchy problem connected with the heat equation we will study how the change of the base space influents the regularity of the solutions.


1956 ◽  
Vol 8 ◽  
pp. 426-431 ◽  
Author(s):  
E. P. Miles ◽  
Ernest Williams

We shall discuss solutions of linear partial differential equations of the form1where Ψ is an ordinary differential operator of order s with respect to t. Our first theorem gives a solution of (1) for the Cauchy data;2j = 1,2, ߪ,s − 1,whenever the function P is annihilated by a finite iteration of the operator Φ.


2018 ◽  
Vol 1 (T5) ◽  
pp. 184-192
Author(s):  
Au Van Vo ◽  
Tuan Hoang Nguyen

In this paper, we study a Cauchy problem for the heat equation with linear source in the form ut(x,t)= uxx(x,t)+f(x,t), u(L,t)=  φ(t), u(L,t)= Ψ (t), (x,t) ∈ (0,L) ×(0, 2π). This problem is ill-posed in the sense of Hadamard. To regularize the problem, the truncation method is proposed to solve the problem in the presence of noisy Cauchy data φε and Ψε satisfying ‖ φε - φ ‖+‖ Ψε - Ψ ‖ ≤ ε and that fε satisfying ‖ fε(x,. ) - f(x,.) ‖ ≤ ε .  We give some error estimates between the regularized solution and the exact solution under some different a-priori conditions of exact solution.


2011 ◽  
Vol 9 (4) ◽  
pp. 878-896 ◽  
Author(s):  
Houde Han ◽  
Leevan Ling ◽  
Tomoya Takeuchi

AbstractDetecting corrosion by electrical field can be modeled by a Cauchy problem of Laplace equation in annulus domain under the assumption that the thickness of the pipe is relatively small compared with the radius of the pipe. The interior surface of the pipe is inaccessible and the nondestructive detection is solely based on measurements from the outer layer. The Cauchy problem for an elliptic equation is a typical ill-posed problem whose solution does not depend continuously on the boundary data. In this work, we assume that the measurements are available on the whole outer boundary on an annulus domain. By imposing reasonable assumptions, the theoretical goal here is to derive the stabilities of the Cauchy solutions and an energy regularization method. Relationship between the proposed energy regularization method and the Tikhonov regularization with Morozov principle is also given. A novel numerical algorithm is proposed and numerical examples are given.


2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


2020 ◽  
Vol 13 (3) ◽  
pp. 257-278 ◽  
Author(s):  
Goro Akagi ◽  
Kazuhiro Ishige ◽  
Ryuichi Sato

AbstractLet H be a norm of {\mathbb{R}^{N}} and {H_{0}} the dual norm of H. Denote by {\Delta_{H}} the Finsler–Laplace operator defined by {\Delta_{H}u:=\operatorname{div}(H(\nabla u)\nabla_{\xi}H(\nabla u))}. In this paper we prove that the Finsler–Laplace operator {\Delta_{H}} acts as a linear operator to {H_{0}}-radially symmetric smooth functions. Furthermore, we obtain an optimal sufficient condition for the existence of the solution to the Cauchy problem for the Finsler heat equation\partial_{t}u=\Delta_{H}u,\quad x\in\mathbb{R}^{N},\,t>0,where {N\geq 1} and {\partial_{t}:=\frac{\partial}{\partial t}}.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
Fang-Fang Dou ◽  
Chu-Li Fu

We consider a Cauchy problem for the Helmholtz equation at a fixed frequency. The problem is severely ill posed in the sense that the solution (if it exists) does not depend continuously on the data. We present a wavelet method to stabilize the problem. Some error estimates between the exact solution and its approximation are given, and numerical tests verify the efficiency and accuracy of the proposed method.


2017 ◽  
Vol 20 (6) ◽  
Author(s):  
Kexue Li

AbstractWe study the Cauchy problem for the semilinear fractional heat equation


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 48
Author(s):  
Hongwu Zhang ◽  
Xiaoju Zhang

This article researches an ill-posed Cauchy problem of the elliptic-type equation. By placing the a-priori restriction on the exact solution we establish conditional stability. Then, based on the generalized Tikhonov and fractional Tikhonov methods, we construct a generalized-fractional Tikhonov-type regularized solution to recover the stability of the considered problem, and some sharp-type estimates of convergence for the regularized method are derived under the a-priori and a-posteriori selection rules for the regularized parameter. Finally, we verify that the proposed method is efficient and acceptable by making the corresponding numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document