scholarly journals Comparison of Random Forest and Support Vector Machine for Indonesian Tweet Complaint Classification

Author(s):  
Desi Ramayanti

In digital business, the managerial commonly need to process text so that it can be used to support decision-making. The number of text documents contained ideas and opinions is progressing and challenging to understand one by one. Whereas if the data are processed and correctly rendered using machine learning, it can present a general overview of a particular case, organization, or object quickly. Numerous researches have been accomplished in this research area, nevertheless, most of the studies concentrated on English text classification. Every language has various techniques or methods to classify text depending on the characteristics of its grammar. The result of classification among languages may be different even though it used the same algorithm. Given the greatness of text classification, text classification algorithms that can be implemented is the support vector machine (SVM) and Random Forest (RF). Based on the background above, this research is aimed to find out the performance of support vector machine algorithm and random forest in classification of Indonesian text. 1. Result of SVM classifier with cross validation k-10 is derived the best accuracy with value 0.9648, however, it spends computational time as long as 40.118 second. Then, result of RF classifier with values, i.e. 'bootstrap': False, 'min_samples_leaf': 1, 'n_estimators': 10, 'min_samples_split': 3, 'criterion': 'entropy', 'max_features': 3, 'max_depth': None is achieved accuracy is 0.9561 and computational time 109.399 second.

2020 ◽  
pp. 3397-3407
Author(s):  
Nur Syafiqah Mohd Nafis ◽  
Suryanti Awang

Text documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the text documents at the first stage. SVM-RFE utilized a backward feature elimination scheme to recursively remove insignificant features from the filtered feature subsets at the second stage. This research executes sets of experiments using a text document retrieved from a benchmark repository comprising a collection of Twitter posts. Pre-processing processes are applied to extract relevant features. After that, the pre-processed features are divided into training and testing datasets. Next, feature selection is implemented on the training dataset by calculating the TF-IDF score for each feature. SVM-RFE is applied for feature ranking as the next feature selection step. Only top-rank features will be selected for text classification using the SVM classifier. Based on the experiments, it shows that the proposed technique able to achieve 98% accuracy that outperformed other existing techniques. In conclusion, the proposed technique able to select the significant features in the unstructured and high dimensional text document.


2011 ◽  
Vol 1 (3) ◽  
pp. 54-70 ◽  
Author(s):  
Abdullah Wahbeh ◽  
Mohammed Al-Kabi ◽  
Qasem Al-Radaideh ◽  
Emad Al-Shawakfa ◽  
Izzat Alsmadi

The information world is rich of documents in different formats or applications, such as databases, digital libraries, and the Web. Text classification is used for aiding search functionality offered by search engines and information retrieval systems to deal with the large number of documents on the web. Many research papers, conducted within the field of text classification, were applied to English, Dutch, Chinese, and other languages, whereas fewer were applied to Arabic language. This paper addresses the issue of automatic classification or classification of Arabic text documents. It applies text classification to Arabic language text documents using stemming as part of the preprocessing steps. Results have showed that applying text classification without using stemming; the support vector machine (SVM) classifier has achieved the highest classification accuracy using the two test modes with 87.79% and 88.54%. On the other hand, stemming has negatively affected the accuracy, where the SVM accuracy using the two test modes dropped down to 84.49% and 86.35%.


Author(s):  
Rashmi K. Thakur ◽  
Manojkumar V. Deshpande

Sentiment analysis is one of the popular techniques gaining attention in recent times. Nowadays, people gain information on reviews of users regarding public transportation, movies, hotel reservation, etc., by utilizing the resources available, as they meet their needs. Hence, sentiment classification is an essential process employed to determine the positive and negative responses. This paper presents an approach for sentiment classification of train reviews using MapReduce model with the proposed Kernel Optimized-Support Vector Machine (KO-SVM) classifier. The MapReduce framework handles big data using a mapper, which performs feature extraction and reducer that classifies the review based on KO-SVM classification. The feature extraction process utilizes features that are classification-specific and SentiWordNet-based. KO-SVM adopts SVM for the classification, where the exponential kernel is replaced by an optimized kernel, finding the weights using a novel optimizer, Self-adaptive Lion Algorithm (SLA). In a comparative analysis, the performance of KO-SVM classifier is compared with SentiWordNet, NB, NN, and LSVM, using the evaluation metrics, specificity, sensitivity, and accuracy, with train review and movie review database. The proposed KO-SVM classifier could attain maximum sensitivity of 93.46% and 91.249% specificity of 74.485% and 70.018%; and accuracy of 84.341% and 79.611% respectively, for train review and movie review databases.


Author(s):  
PETER MC LEOD ◽  
BRIJESH VERMA

This paper presents a novel technique for the classification of suspicious areas in digital mammograms. The proposed technique is based on clustering of input data into numerous clusters and amalgamating them with a Support Vector Machine (SVM) classifier. The technique is called multi-cluster support vector machine (MCSVM) and is designed to provide a fast converging technique with good generalization abilities leading to an improved classification as a benign or malignant class. The proposed MCSVM technique has been evaluated on data from the Digital Database of Screening Mammography (DDSM) benchmark database. The experimental results showed that the proposed MCSVM classifier achieves better results than standard SVM. A paired t-test and Anova analysis showed that the results are statistically significant.


2007 ◽  
Vol 3 ◽  
pp. 117693510700300 ◽  
Author(s):  
Changyu Shen ◽  
Timothy E Breen ◽  
Lacey E Dobrolecki ◽  
C. Max Schmidt ◽  
George W. Sledge ◽  
...  

Introduction As an alternative to DNA microarrays, mass spectrometry based analysis of proteomic patterns has shown great potential in cancer diagnosis. The ultimate application of this technique in clinical settings relies on the advancement of the technology itself and the maturity of the computational tools used to analyze the data. A number of computational algorithms constructed on different principles are available for the classification of disease status based on proteomic patterns. Nevertheless, few studies have addressed the difference in the performance of these approaches. In this report, we describe a comparative case study on the classification accuracy of hepatocellular carcinoma based on the serum proteomic pattern generated from a Surface Enhanced Laser Desorption/Ionization (SELDI) mass spectrometer. Methods Nine supervised classification algorithms are implemented in R software and compared for the classification accuracy. Results We found that the support vector machine with radial function is preferable as a tool for classification of hepatocellular carcinoma using features in SELDI mass spectra. Among the rest of the methods, random forest and prediction analysis of microarrays have better performance. A permutation-based technique reveals that the support vector machine with a radial function seems intrinsically superior in learning from the training data since it has a lower prediction error than others when there is essentially no differential signal. On the other hand, the performance of the random forest and prediction analysis of microarrays rely on their capability of capturing the signals with substantial differentiation between groups. Conclusions Our finding is similar to a previous study, where classification methods based on the Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectrometry are compared for the prediction accuracy of ovarian cancer. The support vector machine, random forest and prediction analysis of microarrays provide better prediction accuracy for hepatocellular carcinoma using SELDI proteomic data than six other approaches.


2021 ◽  
Vol 7 ◽  
pp. e680
Author(s):  
Muhammad Amirul Abdullah ◽  
Muhammad Ar Rahim Ibrahim ◽  
Muhammad Nur Aiman Shapiee ◽  
Muhammad Aizzat Zakaria ◽  
Mohd Azraai Mohd Razman ◽  
...  

This study aims at classifying flat ground tricks, namely Ollie, Kickflip, Shove-it, Nollie and Frontside 180, through the identification of significant input image transformation on different transfer learning models with optimized Support Vector Machine (SVM) classifier. A total of six amateur skateboarders (20 ± 7 years of age with at least 5.0 years of experience) executed five tricks for each type of trick repeatedly on a customized ORY skateboard (IMU sensor fused) on a cemented ground. From the IMU data, a total of six raw signals extracted. A total of two input image type, namely raw data (RAW) and Continous Wavelet Transform (CWT), as well as six transfer learning models from three different families along with grid-searched optimized SVM, were investigated towards its efficacy in classifying the skateboarding tricks. It was shown from the study that RAW and CWT input images on MobileNet, MobileNetV2 and ResNet101 transfer learning models demonstrated the best test accuracy at 100% on the test dataset. Nonetheless, by evaluating the computational time amongst the best models, it was established that the CWT-MobileNet-Optimized SVM pipeline was found to be the best. It could be concluded that the proposed method is able to facilitate the judges as well as coaches in identifying skateboarding tricks execution.


Author(s):  
Suhas S ◽  
Dr. C. R. Venugopal

An enhanced classification system for classification of MR images using association of kernels with support vector machine is developed and presented in this paper along with the design and development of content-based image retrieval (CBIR) system. Content of image retrieval is the process of finding relevant image from large collection of image database using visual queries. Medical images have led to growth in large image collection. Oriented Rician Noise Reduction Anisotropic Diffusion filter is used for image denoising. A modified hybrid Otsu algorithm termed is used for image segmentation. The texture features are extracted using GLCM method. Genetic algorithm with Joint entropy is adopted for feature selection. The classification is done by support vector machine along with various kernels and the performance is validated. A classification accuracy of 98.83% is obtained using SVM with GRBF kernel. Various features have been extracted and these features are used to classify MR images into five different categories. Performance of the MC-SVM classifier is compared with different kernel functions. From the analysis and performance measures like classification accuracy, it is inferred that the brain and spinal cord MRI classification is best done using MC- SVM with Gaussian RBF kernel function than linear and polynomial kernel functions. The proposed system can provide best classification performance with high accuracy and low error rate.


Author(s):  
Bhaswati Mandal ◽  
Manash Pratim Sarma ◽  
Kandarpa Kumar Sarma

This chapter presents a method for generating binary and multiclass Support Vector Machine (SVM) classifier with multiplierless kernel function. This design provides reduced power, area and reduced cost due to the use of multiplierless kernel operation. Binary SVM classifier classifies two groups of linearly or nonlinearly separable data while the multiclass classification provides classification of three nonlinearly separable data. Here, at first SVM classifier is trained for different classification problems and then the extracted training parameters are used in the testing phase of the same. The dataflow from all the processing elements (PEs) are parallely supported by systolic array. This systolic array architecture provides faster processing of the whole system design.


Author(s):  
Weiwei Yang ◽  
Haifeng Song

Recent research has shown that integration of spatial information has emerged as a powerful tool in improving the classification accuracy of hyperspectral image (HSI). However, partitioning homogeneous regions of the HSI remains a challenging task. This paper proposes a novel spectral-spatial classification method inspired by the support vector machine (SVM). The model consists of spectral-spatial feature extraction channel (SSC) and SVM classifier. SSC is mainly used to extract spatial-spectral features of HSI. SVM is mainly used to classify the extracted features. The model can automatically extract the features of HSI and classify them. Experiments are conducted on benchmark HSI dataset (Indian Pines). It is found that the proposed method yields more accurate classification results compared to the state-of-the-art techniques.


Sign in / Sign up

Export Citation Format

Share Document