scholarly journals AI Driven Planetary Bot for Future Vision

Author(s):  
Seema J ◽  
Kunal Kumar Gupta ◽  
Challapalli Balaram ◽  
Akshay Puttu Shetty ◽  
Kamjula Vasudeva Reddy

These days focus is more on technologies like Artificial Intelligence, Machine Learning and IoT. There is lots of platforms available for IOT implementation. ESP8266 chip is among them Here the implementation is about prediction of different aspects of weather data that can be used in many ways like predicting the future condition of different region of earth or predicting future condition of different planets and their different regions. To implement this system, we need different sensors like pressure sensor humidity sensor, temperature sensor and a light intensity sensor i.e DHT11 is utilize for temperature and humidity data together and LDR. Is for light intensity. The data which is sensed by different sensors are than uploaded to Thingspeak which is an API for cloud server by the help of NodeMCU and then converted to csv format. The data can be used for monitoring the real time values too. Machine Learning Environment can be setup by the help of a CNN model. Training of model can be done by recorded values of sensor data. After recording data from sensors to NodeMCU like temperature, pressure, humidity and light intensity and after these values are sent to python environment that is Jupyter notebook for further analysis. Here the data which is used is real time data to predict the particular value and test the model.

2019 ◽  
Vol 8 (4) ◽  
pp. 167 ◽  
Author(s):  
Bartolomeo Ventura ◽  
Andrea Vianello ◽  
Daniel Frisinghelli ◽  
Mattia Rossi ◽  
Roberto Monsorno ◽  
...  

Finding a solution to collect, analyze, and share, in near real-time, data acquired by heterogeneous sensors, such as traffic, air pollution, soil moisture, or weather data, represents a great challenge. This paper describes the solution developed at Eurac Research to automatically upload data, in near real-time, by adopting Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) standards to guarantee interoperability. We set up a methodology capable of ingesting heterogeneous datasets to automatize observation uploading and sensor registration, with minimum interaction required of the user. This solution has been successfully tested and applied in the Long Term (Socio-)Ecological Research (LT(S)ER) Matsch-Mazia initiative, and the code is accessible under the CC BY 4.0 license.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Sivadi Sivadi ◽  
Moorthy Moorthy ◽  
Vijender Solanki

Introduction: The article is the product of the research “Due to the increase in popularity of Internet of Things (IoT), a huge amount of sensor data is being generated from various smart city applications”, developed at Pondicherry University in the year 2019. Problem:To acquire and analyze the huge amount of sensor-generated data effectively is a significant problem when processing the data. Objective:  To propose a novel framework for IoT sensor data analysis using machine learning based improved Gaussian Mixture Model (GMM) by acquired real-time data.  Methodology:In this paper, the clustering based GMM models are used to find the density patterns on a daily or weekly basis for user requirements. The ThingSpeak cloud platform used for performing analysis and visualizations. Results:An analysis has been performed on the proposed mechanism implemented on real-time traffic data with Accuracy, Precision, Recall, and F-Score as measures. Conclusions:The results indicate that the proposed mechanism is efficient when compared with the state-of-the-art schemes. Originality:Applying GMM and ThingSpeak Cloud platform to perform analysis on IoT real-time data is the first approach to find traffic density patterns on busy roads. Restrictions:There is a need to develop the application for mobile users to find the optimal traffic routes based on density patterns. The authors could not concentrate on the security aspect for finding density patterns.


2019 ◽  
Vol 8 (4) ◽  
pp. 4531-4536

With a drastic change in climate continuously it is very harmful to the people who are living in the disaster-prone areas. In some areas the people are not warned for the consequences of coming specifically in their areas, they are told about the average temperature and humidity of the city while the humidity and temperature vary at different altitude and changes at short distances. The system is a very cost-effective and efficient method for controlling and monitoring the weather, and it sends the data to the cloud so that it can be visible anywhere through internet. The temperature, humidity, and pressure play a significant role in different fields like agricultural, industrial and Logistical Field. Weather forecast is necessary for the growth and development of these industries. The Internet of Things (IoT) is the technology used in developing the proposed system, which is an efficient and advanced method for connecting the sensors to the cloud which can store real-time sensor data and connect the entire world of things in a network. Here things might be anything like electronic gadgets, sensors, and automotive electronic equipment. The system deals with controlling and monitoring the environmental conditions like Temperature, Pressure, Smoke, Relative humidity level and various other gases with sensors and sends the information to the cloud and then plot the sensor data in graphical form. An Intelligent prediction is to be done using machine learning. Machine learning is a branch of Artificial Intelligence (AI) which is a compelling method of Analyzing and predicting the given data-set. The data collected will be analyzed continuously. The real-time data which has to be sent through the sensor can be accessible throughout the world using the internet


Author(s):  
Negin Yousefpour ◽  
Steve Downie ◽  
Steve Walker ◽  
Nathan Perkins ◽  
Hristo Dikanski

Bridge scour is a challenge throughout the U.S.A. and other countries. Despite the scale of the issue, there is still a substantial lack of robust methods for scour prediction to support reliable, risk-based management and decision making. Throughout the past decade, the use of real-time scour monitoring systems has gained increasing interest among state departments of transportation across the U.S.A. This paper introduces three distinct methodologies for scour prediction using advanced artificial intelligence (AI)/machine learning (ML) techniques based on real-time scour monitoring data. Scour monitoring data included the riverbed and river stage elevation time series at bridge piers gathered from various sources. Deep learning algorithms showed promising in prediction of bed elevation and water level variations as early as a week in advance. Ensemble neural networks proved successful in the predicting the maximum upcoming scour depth, using the observed sensor data at the onset of a scour episode, and based on bridge pier, flow and riverbed characteristics. In addition, two of the common empirical scour models were calibrated based on the observed sensor data using the Bayesian inference method, showing significant improvement in prediction accuracy. Overall, this paper introduces a novel approach for scour risk management by integrating emerging AI/ML algorithms with real-time monitoring systems for early scour forecast.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 303
Author(s):  
Eloise S. Fogarty ◽  
David L. Swain ◽  
Greg M. Cronin ◽  
Luis E. Moraes ◽  
Derek W. Bailey ◽  
...  

In the current study, a simulated online parturition detection model is developed and reported. Using a machine learning (ML)-based approach, the model incorporates data from Global Navigation Satellite System (GNSS) tracking collars, accelerometer ear tags and local weather data, with the aim of detecting parturition events in pasture-based sheep. The specific objectives were two-fold: (i) determine which sensor systems and features provide the most useful information for lambing detection; (ii) evaluate how these data might be integrated using ML classification to alert to a parturition event as it occurs. Two independent field trials were conducted during the 2017 and 2018 lambing seasons in New Zealand, with the data from each used for ML training and independent validation, respectively. Based on objective (i), four features were identified as exerting the greatest importance for lambing detection: mean distance to peers (MDP), MDP compared to the flock mean (MDP.Mean), closest peer (CP) and posture change (PC). Using these four features, the final ML was able to detect 27% and 55% of lambing events within ±3 h of birth with no prior false positives. If the model sensitivity was manipulated such that earlier false positives were permissible, this detection increased to 91% and 82% depending on the requirement for a single alert, or two consecutive alerts occurring. To identify the potential causes of model failure, the data of three animals were investigated further. Lambing detection appeared to rely on increased social isolation behaviour in addition to increased PC behaviour. The results of the study support the use of integrated sensor data for ML-based detection of parturition events in grazing sheep. This is the first known application of ML classification for the detection of lambing in pasture-based sheep. Application of this knowledge could have significant impacts on the ability to remotely monitor animals in commercial situations, with a logical extension of the information for remote monitoring of animal welfare.


Author(s):  
Atheer Alahmed ◽  
Amal Alrasheedi ◽  
Maha Alharbi ◽  
Norah Alrebdi ◽  
Marwan Aleasa ◽  
...  

2021 ◽  
Author(s):  
Goedele Verreydt ◽  
Niels Van Putte ◽  
Timothy De Kleyn ◽  
Joris Cool ◽  
Bino Maiheu

<p>Groundwater dynamics play a crucial role in the spreading of a soil and groundwater contamination. However, there is still a big gap in the understanding of the groundwater flow dynamics. Heterogeneities and dynamics are often underestimated and therefore not taken into account. They are of crucial input for successful management and remediation measures. The bulk of the mass of mass often is transported through only a small layer or section within the aquifer and is in cases of seepage into surface water very dependent to rainfall and occurring tidal effects.</p><p> </p><p>This study contains the use of novel real-time iFLUX sensors to map the groundwater flow dynamics over time. The sensors provide real-time data on groundwater flow rate and flow direction. The sensor probes consist of multiple bidirectional flow sensors that are superimposed. The probes can be installed directly in the subsoil, riverbed or monitoring well. The measurement setup is unique as it can perform measurements every second, ideal to map rapid changing flow conditions. The measurement range is between 0,5 and 500 cm per day.</p><p> </p><p>We will present the measurement principles and technical aspects of the sensor, together with two case studies.</p><p> </p><p>The first case study comprises the installation of iFLUX sensors in 4 different monitoring wells in a chlorinated solvent plume to map on the one hand the flow patterns in the plume, and on the other hand the flow dynamics that are influenced by the nearby popular trees. The foreseen remediation concept here is phytoremediation. The sensors were installed for a period of in total 4 weeks. Measurement frequency was 5 minutes. The flow profiles and time series will be presented together with the determined mass fluxes.</p><p> </p><p>A second case study was performed on behalf of the remediation of a canal riverbed. Due to industrial production of tar and carbon black in the past, the soil and groundwater next to the small canal ‘De Lieve’ in Ghent, Belgium, got contaminated with aliphatic and (poly)aromatic hydrocarbons. The groundwater contaminants migrate to the canal, impact the surface water quality and cause an ecological risk. The seepage flow and mass fluxes of contaminants into the surface water were measured with the novel iFLUX streambed sensors, installed directly in the river sediment. A site conceptual model was drawn and dimensioned based on the sensor data. The remediation concept to tackle the inflowing pollution: a hydraulic conductive reactive mat on the riverbed that makes use of the natural draining function of the waterbody, the adsorption capacity of a natural or secondary adsorbent and a future habitat for micro-organisms that biodegrade contaminants. The reactive mats were successfully installed and based on the mass flux calculations a lifespan of at least 10 years is expected for the adsorption material.  </p>


2021 ◽  
Author(s):  
Arturo Magana-Mora ◽  
Mohammad AlJubran ◽  
Jothibasu Ramasamy ◽  
Mohammed AlBassam ◽  
Chinthaka Gooneratne ◽  
...  

Abstract Objective/Scope. Lost circulation events (LCEs) are among the top causes for drilling nonproductive time (NPT). The presence of natural fractures and vugular formations causes loss of drilling fluid circulation. Drilling depleted zones with incorrect mud weights can also lead to drilling induced losses. LCEs can also develop into additional drilling hazards, such as stuck pipe incidents, kicks, and blowouts. An LCE is traditionally diagnosed only when there is a reduction in mud volume in mud pits in the case of moderate losses or reduction of mud column in the annulus in total losses. Using machine learning (ML) for predicting the presence of a loss zone and the estimation of fracture parameters ahead is very beneficial as it can immediately alert the drilling crew in order for them to take the required actions to mitigate or cure LCEs. Methods, Procedures, Process. Although different computational methods have been proposed for the prediction of LCEs, there is a need to further improve the models and reduce the number of false alarms. Robust and generalizable ML models require a sufficiently large amount of data that captures the different parameters and scenarios representing an LCE. For this, we derived a framework that automatically searches through historical data, locates LCEs, and extracts the surface drilling and rheology parameters surrounding such events. Results, Observations, and Conclusions. We derived different ML models utilizing various algorithms and evaluated them using the data-split technique at the level of wells to find the most suitable model for the prediction of an LCE. From the model comparison, random forest classifier achieved the best results and successfully predicted LCEs before they occurred. The developed LCE model is designed to be implemented in the real-time drilling portal as an aid to the drilling engineers and the rig crew to minimize or avoid NPT. Novel/Additive Information. The main contribution of this study is the analysis of real-time surface drilling parameters and sensor data to predict an LCE from a statistically representative number of wells. The large-scale analysis of several wells that appropriately describe the different conditions before an LCE is critical for avoiding model undertraining or lack of model generalization. Finally, we formulated the prediction of LCEs as a time-series problem and considered parameter trends to accurately determine the early signs of LCEs.


2021 ◽  
Author(s):  
Nagaraju Reddicharla ◽  
Subba Ramarao Rachapudi ◽  
Indra Utama ◽  
Furqan Ahmed Khan ◽  
Prabhker Reddy Vanam ◽  
...  

Abstract Well testing is one of the vital process as part of reservoir performance monitoring. As field matures with increase in number of well stock, testing becomes tedious job in terms of resources (MPFM and test separators) and this affect the production quota delivery. In addition, the test data validation and approval follow a business process that needs up to 10 days before to accept or reject the well tests. The volume of well tests conducted were almost 10,000 and out of them around 10 To 15 % of tests were rejected statistically per year. The objective of the paper is to develop a methodology to reduce well test rejections and timely raising the flag for operator intervention to recommence the well test. This case study was applied in a mature field, which is producing for 40 years that has good volume of historical well test data is available. This paper discusses the development of a data driven Well test data analyzer and Optimizer supported by artificial intelligence (AI) for wells being tested using MPFM in two staged approach. The motivating idea is to ingest historical, real-time data, well model performance curve and prescribe the quality of the well test data to provide flag to operator on real time. The ML prediction results helps testing operations and can reduce the test acceptance turnaround timing drastically from 10 days to hours. In Second layer, an unsupervised model with historical data is helping to identify the parameters that affecting for rejection of the well test example duration of testing, choke size, GOR etc. The outcome from the modeling will be incorporated in updating the well test procedure and testing Philosophy. This approach is being under evaluation stage in one of the asset in ADNOC Onshore. The results are expected to be reducing the well test rejection by at least 5 % that further optimize the resources required and improve the back allocation process. Furthermore, real time flagging of the test Quality will help in reduction of validation cycle from 10 days hours to improve the well testing cycle process. This methodology improves integrated reservoir management compliance of well testing requirements in asset where resources are limited. This methodology is envisioned to be integrated with full field digital oil field Implementation. This is a novel approach to apply machine learning and artificial intelligence application to well testing. It maximizes the utilization of real-time data for creating advisory system that improve test data quality monitoring and timely decision-making to reduce the well test rejection.


Sign in / Sign up

Export Citation Format

Share Document