scholarly journals Formation and inter-piconet communications in cognitive personal area networks

Author(s):  
Md. Mizanur Rahman

This dissertation presents a new approach for achieving group rendezvous with a coordinator node towards forming a Cognitive Personal Area Network (CPAN) by an arbitrary number of nodes. We propose a protocol for the time to form CPAN in which the nodes join the coordinator simultaneously instead of sequentially. Specifically, we develop an analytical model and derive the distribution of time to form CPAN under the considerations of random arrivals of nodes and their random times to rendezvous with coordinator. We also investigate the CPAN formation time by considering the random activity of primary user (PU). Besides operating in a CPAN, the nodes may have traffic destined to the nodes of other CPAN. In this dissertation, we also propose a bridging protocol in which a shared (bridge) node routes the inter-CPAN traffic between two CPANs. As the bridge node shares its time between two CPANs, the bridge traffic gets priority over that of ordinary nodes in both CPANs. We consider a single, unidirectional bridge because the traffic in the opposite direction can easily be accommodated by having another bridge node. We develop an analytical model based on probabilistic modeling and queueing theory to evaluate the performance of the bridging protocol. We validate the network performance by analyzing the waiting time of local and non-local packets and how the node or bridge transmission is affected by the collision with primary source activity. Finally, we propose a low-overhead two-way bridging scheme for two-hop CPANs, which is more realistic and can be used a basis for routing inter-CPAN traffic in a multihop network. In this advance bringing protocol, the bridge switches between the CPANs without any predefined arrangement, which resulted in simplified bridge scheduling and increased fairness for all nodes. We also analyze its performance through probabilistic analysis and renewal theory. We show that the CPANs are indeed decoupled in terms of synchronization, however the performance of both local and non-local traffic in either CPAN depends on the traffic intensity in both CPANs as well as on the portion of traffic targeting non-local destinations

2021 ◽  
Author(s):  
Md. Mizanur Rahman

This dissertation presents a new approach for achieving group rendezvous with a coordinator node towards forming a Cognitive Personal Area Network (CPAN) by an arbitrary number of nodes. We propose a protocol for the time to form CPAN in which the nodes join the coordinator simultaneously instead of sequentially. Specifically, we develop an analytical model and derive the distribution of time to form CPAN under the considerations of random arrivals of nodes and their random times to rendezvous with coordinator. We also investigate the CPAN formation time by considering the random activity of primary user (PU). Besides operating in a CPAN, the nodes may have traffic destined to the nodes of other CPAN. In this dissertation, we also propose a bridging protocol in which a shared (bridge) node routes the inter-CPAN traffic between two CPANs. As the bridge node shares its time between two CPANs, the bridge traffic gets priority over that of ordinary nodes in both CPANs. We consider a single, unidirectional bridge because the traffic in the opposite direction can easily be accommodated by having another bridge node. We develop an analytical model based on probabilistic modeling and queueing theory to evaluate the performance of the bridging protocol. We validate the network performance by analyzing the waiting time of local and non-local packets and how the node or bridge transmission is affected by the collision with primary source activity. Finally, we propose a low-overhead two-way bridging scheme for two-hop CPANs, which is more realistic and can be used a basis for routing inter-CPAN traffic in a multihop network. In this advance bringing protocol, the bridge switches between the CPANs without any predefined arrangement, which resulted in simplified bridge scheduling and increased fairness for all nodes. We also analyze its performance through probabilistic analysis and renewal theory. We show that the CPANs are indeed decoupled in terms of synchronization, however the performance of both local and non-local traffic in either CPAN depends on the traffic intensity in both CPANs as well as on the portion of traffic targeting non-local destinations


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 693
Author(s):  
Kvitoslava Obelovska ◽  
Olga Panova ◽  
Vincent Karovič

The performance of Wireless Local Area Network (WLAN) is highly dependent on the processes that are implemented in the Medium Access Control (MAC) sublayer regulated by the IEEE 802.11 standard. In turn, various parameters affect the performance of the MAC sublayer, the most important of which is the number of stations in the network and the offered load. With the massive growth of multimedia traffic, research of the network performance depending on traffic types is relevant. In this paper, we present the impact of a high-/low-priority traffic ratio on WLAN performance with different numbers of access categories. The simulation results show different impact of high-/low-priority traffic ratio on the performance of the MAC sublayer of wireless LANs depending on different network-sizes and on network conditions. Performance of the large network with two access categories and with the prevalent high-priority traffic is significantly higher than in the case of using four categories on the MAC sublayer. This allows us to conclude that the performance improvement of the large network with the prevalent high-priority traffic can be achieved by an adaptive adjustment of the access categories number on the MAC sublayer.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Lipi K. Chhaya ◽  
Paawan Sharma ◽  
Adesh Kumar ◽  
Govind Bhagwatikar

An electrical “Grid” is a network that carries electricity from power plants to customer premises. Smart Grid is an assimilation of electrical and communication infrastructure. Smart Grid is characterized by bidirectional flow of electricity and information. Smart Grid is a complex network with hierarchical architecture. Realization of complete Smart Grid architecture necessitates diverse set of communication standards and protocols. Communication network protocols are engineered and established on the basis of layered approach. Each layer is designed to produce an explicit functionality in association with other layers. Layered approach can be modified with cross layer approach for performance enhancement. Complex and heterogeneous architecture of Smart Grid demands a deviation from primitive approach and reworking of an innovative approach. This paper describes a joint or cross layer optimization of Smart Grid home/building area network based on IEEE 802.11 standard using RIVERBED OPNET network design and simulation tool. The network performance can be improved by selecting various parameters pertaining to different layers. Simulation results are obtained for various parameters such as WLAN throughput, delay, media access delay, and retransmission attempts. The graphical results show that various parameters have divergent effects on network performance. For example, frame aggregation decreases overall delay but the network throughput is also reduced. To prevail over this effect, frame aggregation is used in combination with RTS and fragmentation mechanisms. The results show that this combination notably improves network performance. Higher value of buffer size considerably increases throughput but the delay is also greater and thus the choice of optimum value of buffer size is inevitable for network performance optimization. Parameter optimization significantly enhances the performance of a designed network. This paper is expected to serve as a comprehensive analysis and performance enhancement of communication standard suitable for Smart Grid HAN applications.


2007 ◽  
Vol 17 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Milan Markovic ◽  
Milos Ivic ◽  
Norbert Pavlovic ◽  
Sladjana Jankovic

In this paper the idea of treating the operational service workers as the elements of technique systems is suggested and the renewal theory is used to forecast the number of accidents caused by human factor. The analytical model is presented and limitations for its application are quoted. Furthermore, the simulation model is developed and the conditions for its use are given. The model observes each worker separately and establishes the exact time of arisen failures, the number of failures at some moment t, time tn, to the nth failure, inconsistency of failure number and total number of failures of the observed population. The model is tested on the sample of 348 engine drivers in PE "Serbian Railways" who have made at leas one accident, in order to research the parameters necessary for using the renewal theory and simulation. .


The faster development of wireless communications has made the spectrum ending up with increasingly with more shortage. The idea of CR was proposed to meet the problem of spectrum effectiveness. In the cognitive networks, the SUs are permitted to detect, distinguish and access the frequency bands that are not at present used by the PU’s. the SU’s must outfit with the spectrum access information to use the primary user’s licence in the home region network. We propose a maximum throughput and power based cognitive radio for home region systems (HAN). At the point when there are different SU’s and numerous channels, spectrum sharing must be taken into account. In this paper we additionally propose a system of multiple channel sensing. We consider the interference to PU brought about by the dynamic access and the erroneous spectrum sensing technique. We investigate the obstruction brought about by the secondary user’s through a reestablishment hypothesis. Under the limitation of interference to primary user, the queuing theory is used to overcome this issue and to obtain the higher data rate of SU’s. finally, it is demonstrated that the cyclostationary detection method can be improved when extra channels are accessible.


2021 ◽  
Vol 12 (06) ◽  
pp. 4750-4762
Author(s):  
Yakubu Ajiji Makeri ◽  
Giuseppe T. Cirella ◽  
Francisco Javier Galas ◽  
Hamid Mohsin Jadah ◽  
Adetayo Olaniyi Adeniran

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4351 ◽  
Author(s):  
Mas Mohamad ◽  
Aduwati Sali ◽  
Fazirulhisyam Hashim ◽  
Rosdiadee Nordin ◽  
Osamu Takyu

This paper investigated the throughput performance of a secondary user (SU) for a random primary user (PU) activity in a realistic experimental model. This paper proposed a sensing and frame duration of the SU to maximize the SU throughput under the collision probability constraint. The throughput of the SU and the probability of collisions depend on the pattern of PU activities. The pattern of PU activity was obtained and modelled from the experimental data that measure the wireless local area network (WLAN) environment. The WLAN signal has detected the transmission opportunity length (TOL) which was analyzed and clustered into large and small durations in the CTOL model. The performance of the SU is then analyzed and compared with static and dynamic PU models. The results showed that the SU throughput in the CTOL model was higher than the static and dynamic models by almost 45% and 12.2% respectively. Furthermore, the probability of collisions in the network and the SU throughput were influenced by the value of the minimum contention window and the maximum back-off stage. The simulation results revealed that the higher contention window had worsened the SU throughput even though the channel has a higher number of TOLs.


Sign in / Sign up

Export Citation Format

Share Document