Radiation-dominated boundary layer between accretion disc and neutron star surface: theory and observations

2014 ◽  
Vol 184 (4) ◽  
pp. 409-422
Author(s):  
Marat R. Gil'fanov ◽  
Rashid A. Syunyaev
2018 ◽  
Vol 620 ◽  
pp. L13 ◽  
Author(s):  
A. Rouco Escorial ◽  
J. van den Eijnden ◽  
R. Wijnands

We present our Swift monitoring campaign of the slowly rotating neutron star Be/X-ray transient GX 304–1 (spin period of ∼275 s) when the source was not in outburst. We found that between its type I outbursts, the source recurrently exhibits a slowly decaying low-luminosity state (with luminosities of 1034 − 35 erg s−1). This behaviour is very similar to what has been observed for another slowly rotating system, GRO J1008–57. For that source, this low-luminosity state has been explained in terms of accretion from a non-ionised (“cold”) accretion disc. Because of the many similarities between the two systems, we suggest that GX 304–1 enters a similar accretion regime between its outbursts. The outburst activity of GX 304–1 ceased in 2016. Our continued monitoring campaign shows that the source is in a quasi-stable low-luminosity state (with luminosities a few factors lower than previously seen) for at least one year now. Using our NuSTAR observation in this state, we found pulsations at the spin period, demonstrating that the X-ray emission is due to accretion of matter onto the neutron star surface. If the accretion geometry during this quasi-stable state is the same as during the cold-disc state, then matter indeed reaches the surface (as predicted) during this later state. We discuss our results in the context of the cold-disc accretion model.


Author(s):  
P B Jones

Abstract A number of previous papers have developed an ion-proton theory of the pulsar polar cap. The basic equations summarizing this are given here with the results of sets of model step-to-step calculations of pulse-precursor profiles. The nature of step-to-step profile variations is described by calculated phase-resolved modulation indices. The conditions under which nulls are present in step sequences are analysed. The change of mean null length with neutron-star surface temperature shows a pathway ending in emission similar to the Rotating Radio Transients. The model accommodates exceptional pulsars, the millisecond pulsars (in principle), and the 8.5 s period PSR J2144-3933. These are considered separately and their emission mechanism discussed in some detail.


1983 ◽  
Vol 101 ◽  
pp. 513-516
Author(s):  
Kenneth A. Van Riper

Neutron star cooling calculations are reported which employ improved physics in the calculation of the temperature drop through the atmosphere. The atmosphere microphysics is discussed briefly. The predicted neutron star surface temperatures, in the interesting interval 300 ≤ t (yr) ≤ 105, do not differ appreciably from the earlier results of Van Riper and Lamb (1981) for a non-magnetic star; for a magnetic star, the surface temperature is lower than in the previous work. Comparison with observational limits show that an exotic cooling mechanism such as neutrino emission from a pion-condensate or in the presence of percolating quarks, is not required, unless the existence of a neutron star in the Tycho or SN1006 supernova remnants is established.


2014 ◽  
Vol 41 (4) ◽  
pp. 044006 ◽  
Author(s):  
R Surman ◽  
O L Caballero ◽  
G C McLaughlin ◽  
O Just ◽  
H-Th Janka

1987 ◽  
Vol 125 ◽  
pp. 457-457
Author(s):  
F.R. Harnden

For years the theoretical models of neutron star formation and evolution had remained largely unconstrained by observation. Following the Einstein X-ray Observatory surveys of supernova remnants and pulsars, however, strict temperature limits were placed on many putative neutron stars. The Einstein search for additional objects in the class of supernova remnants with embedded pulsars has increased the number of such objects by two. For the four objects in this class, the surface temperature limits (see Table 1) provide meaningful logically sound constraints on the neutron star models. For the future, however, still better X-ray observations are needed, both to increase the number of objects available for study and to refine the spatial and spectral capabilities of the X-ray measurements.


2000 ◽  
Vol 177 ◽  
pp. 695-698 ◽  
Author(s):  
B. Paul ◽  
M. Kawasaki ◽  
T. Dotani ◽  
F. Nagase

AbstractNewASCAobservations of two anomalous X-ray pulsars (AXP) 4U 0142+61 and 1E 1048.1-5937, made in 1998, when compared to earlier observations in 1994 show remarkable stability in the intensity, spectral shape and pulse profile. The energy spectra consist of two components, a power-law and a blackbody emission from the neutron star surface. In IE 1048.1-5937, we have identified three epochs with different spin-down rates and discuss its implications for the magnetar hypothesis of the AXPs. We also note that the spin-down rate and its variations in IE 1048.1-5937 are much larger than what normally can be produced by an accretion disc with very low mass accretion rate corresponding to its low X-ray luminosity.


Sign in / Sign up

Export Citation Format

Share Document